Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
Citation: Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157

Research and application of flexible wearable electronics based on nanogenerator in touch sensor

doi: 10.7498/aps.70.20202157
Funds:  Project support by the National Natural Science Foundation of China (Grant Nos. U20A20166, 61675027, 61805015, 61804011), the National Key R & D Project From Minister of Science and Technology, China (Grant No. 2016YFA0202703), the Natural Science Foundation of Beijing, China (Grant No. Z180011), and the Shenzhen Science and Technology Program, China (Grant No. KQTD20170810105439418)
More Information
  • With the advance of the fourth industrial revolution, a wave of emerging industries and interdisciplinary research is breaking out, such as the Internet of Things, megadata, humanoid robots and artificial intelligence.The rapid development of these functional electronic devices is changing the way people communicate with each other and their surroundings, thus integrating our world into an intelligent information network. The applications of flexible wearable electronic devices in intelligent robots, health and medical monitoring and other fields have attracted great attention. Following the human skin, the device can respond to external stimuli and should also have stretchability and self-healing properties. In practical applications, a large network of sensors is needed to connect with humans or robots, so the supply of energy is crucial. Several forms of green and renewable energy have been searched for, such as magnetic energy, solar energy, thermal energy, mechanical energy and microbial chemical energy. However, high cost, limitations in the choice of materials, and other disadvantages have become serious bottlenecks.
    The advent of nanogenerator brings a novel and effective solution to the above problems. Here in this work, the triboelectronic nanogenerator (TENG) and the piezoelectric generator (PENG) are taken as two representative objectives, which are, respectively, based on the triboelectronic effect and piezoelectronic effect to realize the collection of mechanical energy, and each of them can be used as a self-power sensor, which can generate electrical signals, respond to environmental stimuli, and need no power supply any more.
    The optimization and design of nanogenerator is always a key factor to improve its performance and wide application. At present, the methods commonly adopted in optimization schemes mainly include material selection, design and optimization of structural layer and electrode. The selection of materials should be based on low cost, stretchability, transparency, stability and biocompatibility. Firstly, for the optimization of structural layer, there are mainly two ways of designing the materials, one is the microstructure of the material surface, and the other is the functionalization of materials.The performance of the nanogenerator is proportional to the charge density of the contact surface. The square of the charge density is the main parameter to quantify the performance of the nanogenerator. Therefore, increasing the charge generation has been the main strategy to improve the output power. The microstructure of materials can be realized by means of colloidal arrays, soft lithography, block copolymer components and surface nanomaterial manufacturing. The same materials can be functionalized by ion doping, plasma treatment, electrical polarization, laser induction, and the formation of nanocomposites. In practical application, more attention is paid to the electrode with excellent performance which can simplify device structure, improve device performance and expand application field. The design of the electrode more focuses on the features such as flexibility, stretchability, high transparency and excellent electrical conductivity. The touch sensors based on TENG and PENG such as pressure sensors, strain sensors, pressure distribution sensors and slip sensors have shown excellent performances in application. Self-powered pressure sensors are used most widely because they are highly sensitive to and can detect the subtle pressure changes such as respiratory or arterial pulse-related changes. Strain sensors can detect signals produced by the body during mechanical movements, such as walking and joint movements. Pressure distribution sensor and slip distribution sensor play a key role in touch screen and smart prosthesis and so on.
    In this article, first, we introduce the mechanism of TENG and PENG, and summarize the way of performing the optimization design of the nanogenerators. Then, we discuss the self-powered sensors based on the nanogenerators such as stress, strain and distribution and slip sensors by combining the marerials and the design of device. Finally, the problems and challenges of the tactile sensor based on the nanogenerators are discussed, and the future development is prospected.

     

  • loading
  • [1]
    Chortos A, Bao Z 2014 Mater. Today 17 321 doi: 10.1016/j.mattod.2014.05.006
    [2]
    Hammock M L, Chortos A, Tee C K, Tok B H, Bao Z 2013 Adv. Mater. 25 5997 doi: 10.1002/adma.201302240
    [3]
    Wang C, Hwang D, Yu Z B, Takei K, Park J, Chen T, Ma B, Javey A 2013 Nat. mater. 12 899 doi: 10.1038/nmat3711
    [4]
    Wang Z L, Song J H 2006 Science 312 242 doi: 10.1126/science.1124005
    [5]
    Tee B C-K, Chortos A, Berndt A, Nguyen A K, Tom A, Mcguire A, Lin Z C, Tien K, Bae W-G, Wang H 2015 Science 350 313 doi: 10.1126/science.aaa9306
    [6]
    Zhao G, Zhang Y, Shi N, Liu Z, Zhang X, Wu M, Pan C, Liu H, Li L, Wang Z L 2019 Nano Energy 59 302 doi: 10.1016/j.nanoen.2019.02.054
    [7]
    Liu Y, Bao R, Tao J, Li J, Dong M, Pan C 2020 Sci. Bull 65 70 doi: 10.1016/j.scib.2019.10.021
    [8]
    Wu X, Chen Y, Xing Z, Lam C W K, Pang S S, Zhang W, Ju Z 2019 Adv. Energy Mater. 9 1900343 doi: 10.1002/aenm.201900343
    [9]
    Dong K, Deng J, Zi Y, Wang Y, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang Z L 2017 Adv. Mater. 29 1702648 doi: 10.1002/adma.201702648
    [10]
    王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Trieboelectronic Nanogenerators (Beijing: Science Press) p14 (in Chinese)
    [11]
    Wang Z L 2014 Faraday Discuss. 176 447 doi: 10.1039/C4FD00159A
    [12]
    Zhu G, Peng B, Chen J, Jing Q, Wang Z L 2015 Nano Energy 14 126 doi: 10.1016/j.nanoen.2014.11.050
    [13]
    Wang Z L 2020 Nano Energy 68 104272 doi: 10.1016/j.nanoen.2019.104272
    [14]
    Fan F R, Tian Z Q, Zhong L W 2012 Nano Energy 1 328 doi: 10.1016/j.nanoen.2012.01.004
    [15]
    Fan F, Lin L, Zhu G, Wu W, Zhang R, Wang Z L 2012 Nano Lett. 12 3109 doi: 10.1021/nl300988z
    [16]
    Niu S, Wang S, Lin L, Liu Y, Zhou Y, Hu Y, Wang Z L 2013 Energy Environ. Sci. 6 3576 doi: 10.1039/c3ee42571a
    [17]
    Niu S, Wang S, Liu Y, Zhou Y, Lin L, Hu Y, Pradel K C, Wang Z L 2014 Energy Environ. Sci. 7 2339 doi: 10.1039/C4EE00498A
    [18]
    Zhu G, Chen J, Zhang T J, Jing Q S, Wang Z L 2014 Nat. Commun. 5 3426 doi: 10.1038/ncomms4426
    [19]
    Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2013 Adv. Mater. 25 6184 doi: 10.1002/adma.201302808
    [20]
    Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2014 Adv. Funct. Mater. 24 3332 doi: 10.1002/adfm.201303799
    [21]
    Xiong J, Lin M, Wang J, Gaw S L, Parida K, Lee P S 2017 Adv. Energy. Mater. 7 1701243 doi: 10.1002/aenm.201701243
    [22]
    Lin M, Parida K, Cheng X, Lee P S 2017 Adv. Mater. Technol-Us. 2 1600186 doi: 10.1002/admt.201600186
    [23]
    Wang S, Xie Y, Niu S, Lin L, Wang Z L 2014 Adv. Mater. 26 2818 doi: 10.1002/adma.201305303
    [24]
    Niu S, Liu Y, Chen X, Wang S, Zhou Y, Lin L, Xie Y, Wang Z L 2015 Nano Energy 12 760 doi: 10.1016/j.nanoen.2015.01.013
    [25]
    Xie Y, Wang S, Niu S, Long L, Jing Q, Jin Y, Wu Z, Zhong L W 2014 Adv. Mater. 26 6599 doi: 10.1002/adma.201402428
    [26]
    Chen H, Song Y, Cheng X, Zhang H 2018 Nano Energy 56 252 doi: 10.1016/j.nanoen.2018.11.061
    [27]
    Henniker J 1962 Nature 196 474 doi: 10.1038/196474a0
    [28]
    Davies D K 2002 J. Phys. D. 2 1533
    [29]
    Zhong L W 2013 ACS Nano 7 9533 doi: 10.1021/nn404614z
    [30]
    Zheng Q, Shi B J, Li Z, Wang Z L, 2017 Adv. Sci. 4 1700029 doi: 10.1002/advs.201700029
    [31]
    Karan S K, Bera R, Paria S, Das A K, Maiti S, Maitra A, Khatua B B 2016 Adv. Energy. Mater. 6 1601016 doi: 10.1002/aenm.201601016
    [32]
    Kim M K, Kim M S, Kwon H B, Jo S E, Kim Y 2017 RSC Adv. 7 48368 doi: 10.1039/C7RA07623A
    [33]
    Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102 doi: 10.1126/science.1139366
    [34]
    Zhuang Y, Xu Z, Li F, Liao Z, Liu W 2015 J. Alloys Compd. 629 113 doi: 10.1016/j.jallcom.2014.12.239
    [35]
    Fang H, Wang X, Li Q, Peng D, Yan Q, Pan C 2016 Adv. Energy. Mater. 6 1600829 doi: 10.1002/aenm.201600829
    [36]
    Gong H, Xu Z, Yang Y, Xu Q, Li X, Cheng X, Huang Y, Zhang F, Zhao J Z, LiS, Liu X, Huang Q, Guo W 2020 Biosens. Bioelectron. 169 112567 doi: 10.1016/j.bios.2020.112567
    [37]
    Tat T, Libanori A, Au C, Yau A, Chen J 2021 Biosens. Bioelectron. 171 112714 doi: 10.1016/j.bios.2020.112714
    [38]
    Zhu G, Yang R, Wang S, Wang Z L 2010 Nano Lett. 10 3151 doi: 10.1021/nl101973h
    [39]
    Wang Z L 2012 MRS Bulletin 37 814 doi: 10.1557/mrs.2012.186
    [40]
    Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970 doi: 10.1039/c2ee22251e
    [41]
    Bhavanasi V, Kumar V, Parida K, Wang J, Lee P S 2016 ACS Appl. Mater. Inter. 8 521 doi: 10.1021/acsami.5b09502
    [42]
    Jeong C K, Baek K M, Niu S, Nam T W, Hur Y H, Park D Y, Hwang G T, Byun M, Wang Z L, Jung Y S 2014 Nano Lett. 14 7031 doi: 10.1021/nl503402c
    [43]
    Choi H J, Lee J H, Jun J, Kim T Y, Kim S W, Lee H 2016 Nano Energy 27 595 doi: 10.1016/j.nanoen.2016.08.014
    [44]
    Jang D, Kim Y, Kim T Y, Koh K, Jeong U, Cho J 2016 Nano Energy 20 283 doi: 10.1016/j.nanoen.2015.12.021
    [45]
    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201 doi: 10.7498/aps.68.20190806

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201 doi: 10.7498/aps.68.20190806
    [46]
    Zhu G, Pan C, Guo W, Chen C Y, Zhou Y, Yu R, Wang Z L 2012 Nano Lett. 12 4960 doi: 10.1021/nl302560k
    [47]
    Chen X, Li X, Shao J, An N, Tian H, Wang C, Han T, Wang L, Lu B 2017 Small 13 1604245 doi: 10.1002/smll.201604245
    [48]
    Khalifa M, Anandhan S 2019 ACS Appl. Nano Mater. 2 7328 doi: 10.1021/acsanm.9b01812
    [49]
    Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, Zhao L, Shi B, Fan Y, Fan Y, Wang Z L, Li Z 2017 Adv. Mater. 29 1703456 doi: 10.1002/adma.201703456
    [50]
    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X 2014 Nano Energy 4 123 doi: 10.1016/j.nanoen.2013.12.016
    [51]
    Yun B K, Kim J W, Kim H S, Jung K W, Yi Y, Jeong M S, Ko J H, Jung J H 2015 Nano Energy 15 523 doi: 10.1016/j.nanoen.2015.05.018
    [52]
    Li H Y, Su L, Kuang S Y, Pan C F, Zhu G, Wang Z L 2015 Adv. Funct. Mater. 25 5691 doi: 10.1002/adfm.201502318
    [53]
    Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang A C, Xu C, Wang Z L 2019 Nat. Commun. 10 1427 doi: 10.1038/s41467-019-09461-x
    [54]
    Kim D W, Lee J H, Kim J K, Jeong U 2020 NPG Asia Mater. 12 6 doi: 10.1038/s41427-019-0176-0
    [55]
    Wang S, Xie Y, Niu S, Lin L, Liu C, Zhou Y, Wang Z L 2014 Adv. Mater. 26 6720 doi: 10.1002/adma.201402491
    [56]
    Chen H, Xu Y, Zhang J, Wu W, Song G 2019 Nano Energy 58 304 doi: 10.1016/j.nanoen.2019.01.029
    [57]
    Yang J, Liu P, Wei X, Luo W, Yang J, Jiang H, Wei D, Shi R, Shi H F 2017 ACS Appl. Mater. Inter. 9 36017 doi: 10.1021/acsami.7b10373
    [58]
    Parida K, Xiong J, Zhou X, Lee P S 2019 Nano Energy 59 237 doi: 10.1016/j.nanoen.2019.01.077
    [59]
    Deng J, Kuang X, Liu R, Ding W, Wang A, Lai Y C, Dong K, Wen Z, Wang Y X, Wang Z L 2018 Adv. Mater. 30 1705918 doi: 10.1002/adma.201705918
    [60]
    Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J, Lee P S 2019 Nat. Commun. 10 2158 doi: 10.1038/s41467-019-10061-y
    [61]
    Belanger M C, Marois Y 2001 J. Biomed. Mater. Res. 58 467 doi: 10.1002/jbm.1043
    [62]
    Starr P, Agrawal C M, Bailey S 2016 J. Biomed. Mater. Res. Part A 104 406 doi: 10.1002/jbm.a.35578
    [63]
    Seitz H, Marlovits S, Schwendenwein I, Müller E, Vécsei V 1998 Biomaterials 19 189 doi: 10.1016/S0142-9612(97)00201-9
    [64]
    Zhang H, Ye X J, Li J S 2009 Biomed. Mater. 4 045007 doi: 10.1088/1748-6041/4/4/045007
    [65]
    Cao Y, Wu H, Allec S I, Wong B M, Nguyen D S, Wang C 2018 Adv. Mater. 30 1804602 doi: 10.1002/adma.201804602
    [66]
    Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R, Lee P S 2017 Adv. Mater. 29 1702181 doi: 10.1002/adma.201702181
    [67]
    Zhu G, Yang W Q, Zhang T, Jing Q, Chen J, Zhou Y S, Bai P, Wang Z L 2014 Nano Lett. 14 3208 doi: 10.1021/nl5005652
    [68]
    Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang Z L 2020 Sci. Adv. 6 eaay2840 doi: 10.1126/sciadv.aay2840
    [69]
    Li W, Duan J, Zhong J, Wu N, Lin S, Xu Z, Chen S, Pan Y, Huang L, Hu B 2018 ACS Appl. Mater. Inter. 10 29675 doi: 10.1021/acsami.8b11121
    [70]
    Niu X, Jia W, Qian S, Zhu J, Zhang J, Hou X, Mu J, Geng W, Cho J, He J, Chou X 2019 ACS Sustainable Chem. Eng. 7 979 doi: 10.1021/acssuschemeng.8b04627
    [71]
    Hwang B, Lee J, Trung T Q, Roh E, Kim D, Kim S W, Lee N E 2015 ACS Nano 9 8801 doi: 10.1021/acsnano.5b01835
    [72]
    Jin L, Tao J, Bao R, Sun L, Pan C 2017 Sci. Rep. 7 10521 doi: 10.1038/s41598-017-10990-y
    [73]
    Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang Ch, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695 doi: 10.1038/s41467-019-10433-4
    [74]
    Kim K, Jang W, Cho J Y, Woo S B, Jeon D H, Ahn J H, Hong S D, Koo H Y, Sung T H 2018 Nano Energy 54 91 doi: 10.1016/j.nanoen.2018.09.056
    [75]
    Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C 2018 Adv. Mater. 30 1706738 doi: 10.1002/adma.201706738
    [76]
    Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang Z L 2017 ACS Nano 11 8364 doi: 10.1021/acsnano.7b03680
    [77]
    Yang Z W, Pang Y, Zhang L, Lu C, Chen J, Zhou T, Zhang C, Wang Z L 2016 ACS Nano 10 10912 doi: 10.1021/acsnano.6b05507
    [78]
    Guo H, Wan J, Wu H, Wang H, Miao L, Song Y, Chen H, Han M, Zhang H X 2020 ACS Appl. Mater. Inter. 12 22357 doi: 10.1021/acsami.0c03510
    [79]
    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1805277 doi: 10.1002/adfm.201805277
    [80]
    Zhu X X, Meng X S, Kuang S Y, Wang X D, Pan C, Zhu G, Wang Z L 2017 Nano Energy 41 387 doi: 10.1016/j.nanoen.2017.09.025
    [81]
    Wang X, Zhang H, Dong L, Han X, Du W, Zhai J, Pan C, Wang Z L 2016 Adv. Mater. 28 2896 doi: 10.1002/adma.201503407
    [82]
    Ma L, Zhou M, Wu R, Patil A, Gong H, Zhu S, Wang T, Zhang Y, Shen S, Dong K, Yang L, Wang J, Guo W, Wang Z L 2020 ACS Nano 14 4716 doi: 10.1021/acsnano.0c00524
    [83]
    Wang X, Song W Z, You M H, Zhang J, Yu M, Fan Z Y, Ramakrishna S, Long Y Z 2018 ACS Nano 12 8588 doi: 10.1021/acsnano.8b04244
    [84]
    Li S, Peng W, Wang J, Lin L, Zi Y, Zhang G, Wang Z L 2016 Acs Nano 10 7973 doi: 10.1021/acsnano.6b03926
    [85]
    Shi M, Zhang J, Chen H, Ha nM, Shankaregowda S A, S uZ, Meng B, ChengX, Zhang H 2016 ACS Nano 10 4083 doi: 10.1021/acsnano.5b07074
    [86]
    ChenM, L iX, Lin L, Du W, Ha nX, Zhu J, Pan C, Wang Z L 2014 Adv. Funct. Mater. 24 5059 doi: 10.1002/adfm.201400431
    [87]
    Jing Q, Xie Y, Zhu G, Han R P S, Wang Z L 2015 Nat. Commun. 6 8031 doi: 10.1038/ncomms9031
    [88]
    Chen H, Song Y, Guo H, Miao L, Chen X, Su Z, Zhang H 2018 Nano Energy 51 496 doi: 10.1016/j.nanoen.2018.07.001
    [89]
    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1802989 doi: 10.1002/adfm.201802989
  • 加载中

Catalog

    Figures(11)

    Article Metrics

    Article views(341) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return