Volume 70 Issue 10
May. 2021
Turn off MathJax
Article Contents
Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
Citation: Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194

Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface

doi: 10.7498/aps.70.20202194
More Information
  • Corresponding author: Ma Li, E-mail: malian@shu.edu.cn; Chen Tao, E-mail: chent@suda.edu.cn
  • Received Date: 23 Dec 2020
  • Rev Recd Date: 10 Mar 2021
  • Available Online: 27 May 2021
  • Publish Date: 27 May 2021
  • The interfacial contact configuration and contact intensity between carbon nanotube and metal surface play an important role in the electrical performance of carbon nanotube field effect transistors and nanoscale carbon nanotube robotic manipulation. In this paper, we investigate numerically the contact configuration and the contact intensity between multiwall carbon nanotube with open ends or capped ends and various metal surfaces in carbon nanotube field effect transistor assembly by the molecular dynamics simulation. The simulation results show that the change in the position and shape of multiwall carbon nanotube on the metal surface are mainly due to the decrease of van der Waals energy reduction: the decrement of van der Waals energy is converted into the internal energy and kinetic energy of carbon nanotubes. Moreover, the binding energy between multiwall carbon nanotube and metal surface is negative, which indicates that multiwall carbon nanotube adheres to the metal surface. In addition, the contact intensity of multiwall carbon nanotube in horizontally contacting metal surface is influenced by initial distance, contact length and metal materials. The final equilibrium distance is around ~0.3 nm when the initial distance is less than ~1 nm. And the contact intensity increases with the augment of contact length between carbon nanotube and metal. The contact intensity between platinum and carbon nanotube is larger than that between tungsten and aluminum, therefore, platinum-coated probe is generally utilized for picking carbon nanotube up. The contact intensity of the carbon nanotubes with the open ends and closed ends in the vertical contact with the metal surface are both lower than those in the horizontal contact. The interfacial contact configuration of carbon nanotube and metal materials mainly include the displacement and geometric deformation of carbon nanotube. The displacement and geometric deformation of multiwall carbon nanotube with open ends on the metal surface finally result in its radial nanoscale ribbon structure. But the closed-end three-wall carbon nanotube has the small axial geometric deformation through comparing the concentration profiles between the initial carbon nanotube and the collapsed carbon nanotube. In a carbon nanotube field effect transistor, the collapsed multiwall carbon nanotube forms the ribbon structure like a single wall carbon nanotube. And the distance between carbon nanotube walls and between the outermost carbon nanotube wall and the metal electrode are both about ~0.34 nm. The atomic scale spacing ensures that electrons tunnel from the metal to the outermost carbon nanotube wall and migrate radially between the inner carbon nanotube walls.

     

  • loading
  • [1]
    Yu M F, Dyer M J, Skidmore G D, Rohrs H W, Lu X, Ausman K D, Ehr J R V, Ruoff R S 1999 Nanotechnology 10 244 doi: 10.1088/0957-4484/10/3/304
    [2]
    Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, S. R R 2000 Science 287 637 doi: 10.1126/science.287.5453.637
    [3]
    Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137 doi: 10.3390/s18041137
    [4]
    王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801 doi: 10.7498/aps.69.20191298

    Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801 doi: 10.7498/aps.69.20191298
    [5]
    Zhang Z Y, Wang S, Ding L, Liang X L, Xu H L, Shen J, Chen Q, Cui R L, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117 doi: 10.1063/1.2907696
    [6]
    Xie S, Jiao N, Tung S, Liu L 2015 Micromachines 6 1317 doi: 10.3390/mi6091317
    [7]
    Yu N, Shi Q, Nakajima M, Wang H P, Yang Z, Sun L N, Huang Q, Fukuda T 2017 J. Micromech. Microeng. 27 105007 doi: 10.1088/1361-6439/aa7961
    [8]
    Fukuda T, Arai F, Dong L 2003 Proc. IEEE 91 1803
    [9]
    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro-Nano Lett. 11 645 doi: 10.1049/mnl.2016.0287
    [10]
    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801 doi: 10.7498/aps.67.20180347

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Toshio F 2018 Acta Phys. Sin. 67 136801 doi: 10.7498/aps.67.20180347
    [11]
    Liu P, Nakajima M, Yang Z, Fukuda T, Arai F 2009 Proc. IMechE Part N: J. Nanoengineering and Nanosystems 222 33
    [12]
    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 2017 5910734
    [13]
    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE/ASME Trans. Mechatron. 22 845 doi: 10.1109/TMECH.2017.2649681
    [14]
    Chen Q, Wang S, Peng L M 2006 Nanotechnology 17 1087 doi: 10.1088/0957-4484/17/4/041
    [15]
    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447 doi: 10.1063/1.122477
    [16]
    Cui J L, Zhang J W, He X Q, Mei X S, Wang W J, Yang X J, Xie H, Yang L J, Wang Y 2017 J. Nanopart. Res. 19 110 doi: 10.1007/s11051-017-3811-0
    [17]
    Gao G H, Çagin T, Goddard W A 1998 Nanotechnology 9 184 doi: 10.1088/0957-4484/9/3/007
    [18]
    Yu M F, Dyer M J, Ruoff R S 2001 J. Appl. Phys. 89 4554 doi: 10.1063/1.1356437
    [19]
    Liu B, Yu M F, Huang Y G 2004 Phys. Rev. B 70 2806
    [20]
    Xiao J, Liu B, Huang Y, Zuo J, Hwang K C, Yu M F 2007 Nanotechnology 18 395703 doi: 10.1088/0957-4484/18/39/395703
    [21]
    Xiao S G, Liu S L, Song M M, Ang N, Zhang H L 2020 Multibody Sys. Dyn. 48 451 doi: 10.1007/s11044-019-09718-9
    [22]
    Xiao S G, Liu S L, Wang H Z, Lin Y, Song M M, Zhang H L 2020 Nonlinear Dyn. 100 1203 doi: 10.1007/s11071-020-05566-x
    [23]
    Zhang D H, Liu Z K, Yang H B, Liu A M 2018 Mol. Simul. 44 648 doi: 10.1080/08927022.2018.1426854
    [24]
    Zhang D H, Yang H B, Liu Z K, Liu A M 2018 J. Alloys Compd. 765 140 doi: 10.1016/j.jallcom.2018.06.182
    [25]
    Andriotis A, Menon M, Gibson H 2008 IEEE Sens. J. 8 910 doi: 10.1109/JSEN.2008.923926
    [26]
    Cui J L, Zhang J W, Wang X W, Theogene B, Wang W J, Tohmyoh H, He X Q, Mei X S 2019 J. Phys. Chem. C 123 19693 doi: 10.1021/acs.jpcc.9b05181
    [27]
    Cui J L, Ren X Y, Mei H H, Wang X W, Zhang J W, Fan Z J, Wang W J, Tohmyoh H, Mei X S 2020 Appl. Surf. Sci. 512 145696 doi: 10.1016/j.apsusc.2020.145696
    [28]
    Xie J, Xue Q, Yan K, Chen H, Xia D, Dong M 2009 J. Phys. Chem. C 113 14747
    [29]
    Yan K Y, Xue Q Z, Xia D, Chen H J, Xie J, Dong M D 2009 ACS Nano 3 2235 doi: 10.1021/nn9005818
    [30]
    Yan K Y, Xue Q Z, Zheng Q B, Xia D, Xie J 2009 J. Phys. Chem. C 113 3120 doi: 10.1021/jp808264d
    [31]
    Ling C C, Xue Q Z, Jing N N, Xia D 2012 RSC Adv. 2 7549 doi: 10.1039/c2ra20554h
    [32]
    Mozos J, Ordejón P, Brandbyge M, Taylor J, Stokbro K 2003 Advances in Quantum Chemistry (Salt Lake City: Academic Press) pp299−314
    [33]
    Chen W, Li H, He Y Z 2014 Phys. Chem. Chem. Phys. 16 7907 doi: 10.1039/C4CP00042K
    [34]
    李瑞, 密俊霞 2017 物理学报 66 046101 doi: 10.7498/aps.66.046101

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101 doi: 10.7498/aps.66.046101
    [35]
    Akita S, Nishijima H, Nakayama Y 2000 J. Phys. D: Appl. Phys. 33 2673 doi: 10.1088/0022-3727/33/21/301
    [36]
    Yang Q 2020 Micro-Nano Lett. 15 883 doi: 10.1049/mnl.2020.0108
    [37]
    Maiti A, Ricca A 2004 Chem. Phys. Lett. 395 7 doi: 10.1016/j.cplett.2004.07.024
    [38]
    Frank S P, Poncharal P, Wang Z L, Heer W A D 1998 Science 280 1744 doi: 10.1126/science.280.5370.1744
    [39]
    Xiang L, Wang Y W, Zhang P P, Fong X Y, Wei X L, Hu Y F 2018 Nanoscale 10 21857 doi: 10.1039/C8NR08259F
    [40]
    Xiao M M, Lin Y X, Xu L, Deng B, Peng H L, Peng L M, Zhang Z Y 2020 Adv. Electron. Mater. 6 2000258 doi: 10.1002/aelm.202000258
    [41]
    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J, Peng L M 2007 Nano Lett. 7 3603 doi: 10.1021/nl0717107
    [42]
    Park C J, Kim Y H, Chang K J 1999 Phys. Rev. B 60 10656 doi: 10.1103/PhysRevB.60.10656
    [43]
    Lu J Q, Wu J, Duan W H, Liu F, Zhu B F, Gu B L 2003 Phys. Rev. Lett. 90 156601 doi: 10.1103/PhysRevLett.90.156601
    [44]
    Lu J Q, Wu J, Duan W H, Gu B L, Johnson H T 2005 J. Appl. Phys. 97 56
    [45]
    Giusca C E, Tison Y, Silva S R P 2008 Nano Lett. 8 3350 doi: 10.1021/nl801782k
  • 加载中

Catalog

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(211) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return