Issue 3
Mar 2020
Turn off MathJax
Article Contents
Wenlong QIN, Ming CONG, Xiang REN, Haiying WEN, Dong LIU. Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051
Citation: Wenlong QIN, Ming CONG, Xiang REN, Haiying WEN, Dong LIU. Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051

Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot

doi: 10.7507/1001-5515.201812051
More Information
  • Corresponding author: REN Xiang, Email: renxiangdy@foxmail.com
  • Received Date: 29 Dec 2018
  • Rev Recd Date: 13 Mar 2020
  • Publish Date: 17 Mar 2020
  • Masticatory robots have a broad application prospect in the field of denture material tests and mandible rehabilitation. Mechanism type of temporomandibular joint structure is an important factor influencing the performance of the masticatory robot. In view of the wide application of elastic components in the field of the biomimetic robot, an elastic component was adopted to simulate the buffering characteristics of the temporomandibular joint disc and formed the elastic temporomandibular joint structure on the basis of point-contact high pair. Secondly, the influences of the elastic temporomandibular joint structure (on mechanism degree, kinematics, dynamics, etc.) were discussed. The position and velocity of the temporomandibular joint were analyzed based on geometric constraints of the joint surface, and the dynamic analysis based on the Lagrange equation was carried out. Finally, the influence of the preload and stiffness of the elastic component was analyzed by the response surface method. The results showed that the elastic temporomandibular joint structure could effectively guarantee the flexible movement and stable force of the joint. The elastic joint structure proposed in this paper further improves the biomimetic behavior of masticatory robots. It provides new ideas for the biomimetic design of viscoelastic joint discs.

     

  • loading
  • [1]
    王嘉津, 左国坤, 张佳楫, 等. 腕功能康复机器人按需辅助控制策略研究. 生物医学工程学杂志, 2020, 37(1): 129-135.
    [2]
    李亮, 丁辉, 王广志. 神经外科手术机器人运动学模型参数辨识及评价方法. 生物医学工程学杂志, 2019, 36(6): 994-1002.
    [3]
    RAO Y V D, Parimi A M, Rahul D P, et al. Robotics in dental implantation. Materials Today, 2017, 4(8): 9327-9332.
    [4]
    Ren L, Yang J, Tan Y, et al. An intelligent dental robot. Advanced Robotics, 2018, 32(12): 659-669. doi: 10.1080/01691864.2018.1482231
    [5]
    Wang Guifei, Ming Cong, Xiang Ren, et al. Chewing-cycle trajectory planning for a dental testing chewing robot. International Journal of Robotics and Automation, 2019. DOI: 10.2316/J.2019.206-5388.
    [6]
    Kalani H, Moghimi S, Akbarzadeh A. Toward a bio-inspired rehabilitation aid: sEMG-CPG approach for online generation of jaw trajectories for a chewing robot. Biomed Signal Process Control, 2019, 51: 285-295. doi: 10.1016/j.bspc.2019.02.022
    [7]
    Kizghin D A, Nelson C A. Optimal design of a parallel robot for dental articulation//2019 Design of Medical Devices Conference (DMD2019), Minnesota: University of Minnesota, 2019: 16-18.
    [8]
    Xu W, Bronlund J E. Mastication robots, Berlin: Springer-Verlag, 2010: 1-28.
    [9]
    Wang X, Xu P, Potgieter J, et al. Review of the biomechanics of TMJ//International Conference on Mechatronics and Machine Vision in Practice, Auckland: IEEE, 2012: 381-386.
    [10]
    易新竹. 学. 北京: 人民卫生出版社, 2013.
    [11]
    孙钟雷, 孙永海, 万鹏, 等. 仿生咀嚼装置设计与试验. 农业机械学报, 2011, 42(8): 214-218.
    [12]
    Cheng Chen, Xu Weiliang, Shang Jianzhong. Kinematics, stiffness and natural frequency of a redundantly actuated masticatory robot constrained by two point-contact higher kinematic pairs//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg: IEEE, 2015: 963-970.
    [13]
    Cheng Chen, Xu Weiliang, Shang Jianzhong. Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Nonlinear Dyn, 2015, 79(2): 1235-1255. doi: 10.1007/s11071-014-1739-9
    [14]
    Mostashiri N, Chen Cheng, Wang Jianxiao, et al. In-vitro measurement of reaction forces in the temporomandibular joints using a redundantly actuated parallel chewing robot//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong: IEEE, 2019: 1467-1472.
    [15]
    杨廷力, 刘安心, 罗玉峰, 等. 机器人机构拓扑结构学. 北京: 科学出版社, 2012.
    [16]
    Wen Haiying, Xiang Ren, Ming Cong, et al. Force analysis and experiment of a redundantly actuated chewing robot//2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland: IEEE, 2017: 1-6.
    [17]
    温海营, 任翔, 徐卫良, 等. 咀嚼机器人颞下颌关节仿生设计及试验测试. 吉林大学学报:工学版, 2019, 49(3): 943-952.
    [18]
    Wen Haiying, Ming Cong, Wang Guifei, et al. Dynamics and optimized torque distribution based force/position hybrid control of a 4-DOF redundantly actuated parallel robot with two point-contact constraints. Int J Control Autom Syst, 2019, 17(5): 1293-1303. doi: 10.1007/s12555-018-0429-7
    [19]
    Sagl B, Schmid-Schwap M, Piehslinger E, et al. A dynamic jaw model with a finite-element temporomandibular joint. Frontiers in Physiology, 2019, 10: 1156. doi: 10.3389/fphys.2019.01156
    [20]
    Commisso M S, Calvo-Gallego J L, Mayo J, et al. Quasi-linear viscoelastic model of the articular disc of the temporomandibular joint. Exp Mech, 2016, 56(7): 1169-1177. doi: 10.1007/s11340-016-0161-2
    [21]
    中国国家标准化管理委员会. GB/T 2089-2009 普通圆柱螺旋压缩弹簧尺寸及参数(两端圈并紧磨平或制扁). 北京: 中国标准出版社, 2009.
    [22]
    魏敦文, 葛文杰, 高涛. 仿生灵感下的弹性驱动器的研究综述. 机器人, 2017, 39(4): 541-550.
  • 加载中

Catalog

    Figures(7)

    Article Metrics

    Article views(420) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return