Citation: | Mengfan LI, Guang YANG. Influence of the concrete and abstract graphs on N200 and P300 potentials[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 427-433, 441. doi: 10.7507/1001-5515.201903042 |
[1] |
王行愚, 金晶, 张宇, 等. 脑控: 基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221.
|
[2] |
Li Wenyu, Feng Duan, Sheng Shili, et al. A human-vehicle collaborative simulated driving system based on hybrid brain-computer interfaces and computer vision. IEEE Trans Cogn Dev Sys, 2018, 10(3): 810-822. doi: 10.1109/TCDS.2017.2766258
|
[3] |
Allison B Z, Wolpaw E W, Wolpaw J R. Brain-computer interface systems: progress and prospects. Expert Rev Med Devices, 2007, 4(4): 463-474. doi: 10.1586/17434440.4.4.463
|
[4] |
Qu Jun, Wang Fei, Xia Zhenping, et al. A novel three-dimensional P300 speller based on stereo visual stimuli. IEEE Trans Hum-Mach Syst, 2018, 48(4): 392-399. doi: 10.1109/THMS.2018.2799525
|
[5] |
王欣, 靳静娜, 李松, 等. 厌恶与悲伤情境图片诱发负性情绪的脑电机制差异探索. 生物医学工程学杂志, 2015, 32(6): 1165-1172. doi: 10.7507/1001-5515.20150207
|
[6] |
Omedes J, Schwarz A, Müller-Putz G R, et al. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI. J Neural Eng, 2018, 15(4): 046023. doi: 10.1088/1741-2552/aac1a1
|
[7] |
魏景汉, 罗跃嘉. 事件相关电位原理与技术. 北京: 科学出版社, 2010.
|
[8] |
Sutton S, Braren M, Zubin J. Evoked potential correlates of stimulus uncertainty. Los Angeles: American Psychological Association, 1964: 1-8.
|
[9] |
Patel S H, Azzam P N. Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci, 2005, 2(4): 147-154.
|
[10] |
范晓丽, 赵朝义, 罗虹, 等. 基于 2-back 任务下 ERP 特征的脑力疲劳客观评价研究. 生物医学工程学杂志, 2018, 35(6): 837-844.
|
[11] |
Palankar M, De Laurentis K J, Alqasemi R, et al. Control of a 9-DoF wheelchair-mounted robotic arm system using a P300 brain computer interface: initial experiments// IEEE International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009: 348-353.
|
[12] |
Iturrate I, Antelis J M, Kubler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot, 2009, 25(3): 614-627. doi: 10.1109/TRO.2009.2020347
|
[13] |
Li Mengfan, Li Wei, Niu Linwei, et al. An event-related potential-based adaptive model for telepresence control of humanoid robot motion in an environment with cluttered obstacles. IEEE Trans Ind Electron, 2017, 64(2): 1696-1705. doi: 10.1109/TIE.2016.2538740
|
[14] |
Jin Jing, Allison B Z, Wang Xingyu, et al. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. J Neurosci Methods, 2012, 205(2): 265-276. doi: 10.1016/j.jneumeth.2012.01.004
|
[15] |
Gonsalvez C J, Barry R J, Rushby J A, et al. Target-to-target interval, intensity, and P300 from an auditory single-stimulus task. Psychophysiology, 2007, 44(2): 245-250. doi: 10.1111/j.1469-8986.2007.00495.x
|
[16] |
Allison B Z, Pineda J A. Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol, 2006, 59(2): 127-140. doi: 10.1016/j.ijpsycho.2005.02.007
|
[17] |
马忠伟, 高上凯. 基于 P300 的脑-机接口: 视觉刺激强度对性能的影响. 清华大学学报:自然科学版, 2008, 48(3): 415-418.
|
[18] |
Allison B Z, Pineda J A. ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehabil Eng, 2003, 11(2): 110-113. doi: 10.1109/TNSRE.2003.814448
|
[19] |
Zhang Dan, Song Huaying, Xu Rui, et al. Toward a minimally invasive brain-computer interface using a single subdural channel: a visual speller study. Neuroimage, 2013, 71(5): 30-41.
|
[20] |
Holz E M, Botrel L, Kaufmann T, et al. Long-term Independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil, 2015, 96(3 Suppl): S16-S26.
|
[21] |
Jin Jing, Sellers E W, Zhou Sijie, et al. A P300 brain-computer interface based on a modification of the mismatch negativity paradigm. Int J Neural Syst, 2015, 25(3): 595-599.
|
[22] |
Kosonogov V, Martinez-Selva J, Carrillo-Verdejo, et al. Effects of social and affective content on exogenous attention as revealed by event-related potentials. Cogn Emot, 2019, 33(4): 683-695. doi: 10.1080/02699931.2018.1486287
|
[23] |
李玥. 基于图像信息的简单图形与复杂视觉场景认知过程研究. 昆明: 云南大学, 2013.
|
[24] |
Bradley M M, Hamby S, Löw A, et al. Brain potentials in perception: picture complexity and emotional arousal. Psychophysiology, 2007, 44(3): 364-373. doi: 10.1111/j.1469-8986.2007.00520.x
|
[25] |
Li Mengfan, Li Wei, Zhou Huihui. Increasing N200 potentials via visual stimulus depicting humanoid robot behavior. Int J Neural Syst, 2016, 26(1): 1-16.
|
[26] |
Zhang Xukun, Zhang Zhenhao, Zhang Zhijun, et al. The role of the motion cue in the dynamic gaze-cueing effect: A study of the lateralized ERPs. Neuropsychologia, 2019, 124: 151-160. doi: 10.1016/j.neuropsychologia.2018.12.016
|
[27] |
Hirai M, Fukushima H, Hiraki K. An event-related potentials study of biological motion perception in humans. Neurosci Lett, 2003, 344(1): 41-44. doi: 10.1016/S0304-3940(03)00413-0
|
[28] |
Zarka D, Cevallos C, Petieau M, et al. Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations. Front Syst Neurosci, 2014, 8: 1-19.
|
[29] |
Hietanen J K, Leppänen J M, Nummenmaa L, et al. Visuospatial attention shifts by gaze and arrow cues: an ERP study. Brain Res, 2008, 1215(2): 123-136.
|
[30] |
Beaucousin V, Cassotti M, Simon G, et al. ERP evidence of a meaningfulness impact on visual global/local processing: When meaning captures attention. Neuropsychologia, 2011, 49(5): 1258-1266. doi: 10.1016/j.neuropsychologia.2011.01.039
|
[31] |
Gunter T C, Bach P. Communicating hands: ERPs elicited by meaningful symbolic hand postures. Neurosci Lett, 2004, 372(1/2): 52-56.
|
[32] |
Potter MC. Short-term conceptual memory for pictures. J Exp Psychol, 1976, 2(5): 509-522.
|
[33] |
Proverbio A M, Riva F. RP and N400 ERP components reflect semantic violations in visual processing of human actions. Neurosci Lett, 2009, 459(3): 142-146. doi: 10.1016/j.neulet.2009.05.012
|
[34] |
Yin Erwei, Zeyl T, Saab R, et al. An auditory-tactile visual saccade-independent P300 brain-computer interface. Int J Neural Syst, 2016, 26(1): 1650001. doi: 10.1142/S0129065716500015
|
[35] |
Li J, Ji H, Cao L, et al. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom. Int J Neural Syst, 2014, 24(4): 1450014. doi: 10.1142/S0129065714500142
|
[36] |
Erdogan SB, Ozsarfati E, Dilek B, et al. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng, 2019, 16(2): 026029. doi: 10.1088/1741-2552/aafdca
|
[37] |
Rakotomamonjy A, Guigue V. BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng, 2008, 55(3): 1147-1154. doi: 10.1109/TBME.2008.915728
|
[38] |
Sereshkeh A, Trott R, Bricout A, et al. Online EEG classification of covert speech for brain-computer interfacing. Int J Neural Syst, 2017, 27(8): 1750033. doi: 10.1142/S0129065717500332
|
[39] |
Wittevrongel B, Van Wolputte E, Van Hulle M M. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding. Sci Rep, 2017, 7(1): 15037. doi: 10.1038/s41598-017-15373-x
|
[40] |
Li Wei, Li Mengfan, Zhou Huihui, et al. A dual stimuli approach combined with convolutional neural network to improve information transfer rate of event-related potential-based brain-computer interface. Int J Neural Syst, 2018, 28(10): 1850034. doi: 10.1142/S012906571850034X
|
[41] |
王金甲, 杨成杰, 胡备. P300 脑机接口控制智能小车系统的设计与实现. 生物医学工程学杂志, 2013, 30(2): 223-228.
|
[42] |
Bechtold L, Bellebaum C, Egan S A, et al. The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing. Brain Lang, 2019, 188: 1-10. doi: 10.1016/j.bandl.2018.10.002
|
[43] |
Martin-Loeches M, Sommer W, Hinojosa J A. ERP components reflecting stimulus identification: contrasting the recognition potential and the early repetition effect (N250r). Int J Psychophysiol, 2005, 55(1): 113-125. doi: 10.1016/j.ijpsycho.2004.06.007
|
[44] |
Merriënboer J J G V, Sweller J. Cognitive load theory in health professional education: design principles and strategies. Med Educ, 2010, 44(1): 85-93. doi: 10.1111/j.1365-2923.2009.03498.x
|
[45] |
Hollender N, Hofmann C, Deneke M, et al. Integrating cognitive load theory and concepts of human-computer interaction. Comput Hum Behav, 2010, 26(6): 1278-1288. doi: 10.1016/j.chb.2010.05.031
|