Citation: | Jinhai WANG, Kangning WANG, Xiaogang CHEN, Huiquan WANG, Shengpu XU, Ming LIU. Indoor simulation training system for brain-controlled wheelchair based on steady-state visual evoked potentials[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 502-511. doi: 10.7507/1001-5515.201906025 |
[1] |
Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173. doi: 10.1109/TRE.2000.847807
|
[2] |
Tanaka K, Matsunaga K, Wang H O. Electroencephalogram-based control of an electric wheelchair. IEEE Trans Robot, 2005, 21(4): 762-766. doi: 10.1109/TRO.2004.842350
|
[3] |
Yu Yang, Liu Yadong, Jiang Jun, et al. An asynchronous control paradigm based on sequential motor imagery and its application in wheelchair navigation. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(12): 2367-2375. doi: 10.1109/TNSRE.2018.2881215
|
[4] |
Rebsamen B, Guan C, Zhang H, et al. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(6): 590-598. doi: 10.1109/TNSRE.2010.2049862
|
[5] |
Tang Jingsheng, Liu Yadong, Hu Dewen, et al. Towards BCI-actuated smart wheelchair system. Biomed Eng Online, 2018, 17(1): 111. doi: 10.1186/s12938-018-0545-x
|
[6] |
Diez P F, Müller S T, Mut V A, et al. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Med Eng Phys, 2013, 35(8): 1155-1164. doi: 10.1016/j.medengphy.2012.12.005
|
[7] |
Müller S T, Celeste W C, Bastos-Filho T F. Brain-computer interface based on visual evoked potentials to command autonomous robotic wheelchair. J Med Biol Eng, 2010, 30(6): 407-416. doi: 10.5405/jmbe.765
|
[8] |
Long Jinyi, Li Yuanqing, Wang Hongtao, et al. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neural Syst Rehabil Eng, 2012, 20(5): 720-729. doi: 10.1109/TNSRE.2012.2197221
|
[9] |
Yu Yang, Zhou Zongtan, Liu Yadong, et al. Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(12): 2516-2526. doi: 10.1109/TNSRE.2017.2766365
|
[10] |
Bi Luzheng, Fan Xinan, Liu Yili. EEG-based brain-controlled mobile robots: a survey. IEEE T Hum-Mach Syst, 2013, 43(2): 161-176. doi: 10.1109/TSMCC.2012.2219046
|
[11] |
Leeb R, Friedman D, Müller-Putz G R, et al. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput Intell Neurosci, 2007(2): 79642.
|
[12] |
Gentiletti G G, Gebhart J G, Acevedo R C, et al. Command of a simulated wheelchair on a virtual environment using a brain-computer interface. IRBM, 2009, 30(5): 218-225.
|
[13] |
Huang Dandan, Qian Kai, Fei Dingyu, et al. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans Neural Syst Rehabil Eng, 2012, 20(3): 379-388. doi: 10.1109/TNSRE.2012.2190299
|
[14] |
Velasco-Álvarez F, Ron-Angevin R, Silva-Sauer L D, et al. Audio-cued motor imagery-based brain-computer interface: navigation through virtual and real environments. Neurocomputing, 2013, 121: 89-98. doi: 10.1016/j.neucom.2012.11.038
|
[15] |
Herweg A, Gutzeit J, Kleih S, et al. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol Psychol, 2016, 121(Pt A): 117-124.
|
[16] |
Yu Tianyou, Xiao Jun, Wang Fangyi, et al. Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng, 2015, 62(7): 1706-1717. doi: 10.1109/TBME.2015.2402283
|
[17] |
Baykara E, Ruf C A, Fioravanti C, et al. Effects of training and motivation on auditory P300 brain-computer interface performance. Clin Neurophysiol, 2016, 127(1): 379-387. doi: 10.1016/j.clinph.2015.04.054
|
[18] |
Wan Feng, Cruz J D, Nan Wenya, et al. Alpha neurofeedback training improves SSVEP-based BCI performance. J Neural Eng, 2016, 13(3): 036019. doi: 10.1088/1741-2560/13/3/036019
|
[19] |
Rose F D, Attree E A, Brooks B M, et al. Training in virtual environments: transfer to real world tasks and equivalence to real task training. Ergonomics, 2000, 43(4): 494-511. doi: 10.1080/001401300184378
|
[20] |
Kenyon R V, Afenya M B. Training in virtual and real environments. Ann Biomed Eng, 1995, 23(4): 445-455. doi: 10.1007/BF02584444
|
[21] |
Holden M K. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav, 2005, 8(3): 187-211. doi: 10.1089/cpb.2005.8.187
|
[22] |
Todorov E, Shadmehr R, Bizzi E. Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J Mot Behav, 1997, 29(2): 147-158. doi: 10.1080/00222899709600829
|
[23] |
Vialatte F B, Maurice M, Dauwels J, et al. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol, 2010, 90(4): 418-438. doi: 10.1016/j.pneurobio.2009.11.005
|
[24] |
Chen Xiaogang, Chen Zhikai, Gao Shangkai, et al. A high-ITR SSVEP-based BCI speller. Brain-Computer Interfaces, 2014, 1(3-4): 181-191. doi: 10.1080/2326263X.2014.944469
|
[25] |
Pastor M A, Artieda J, Arbizu J, et al. Human cerebral activation during steady-state visual-evoked responses. J Neurosci, 2003, 23(37): 11621-11627. doi: 10.1523/JNEUROSCI.23-37-11621.2003
|
[26] |
Chen Xiaogang, Wang Yijun, Gao Shangkai, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng, 2015, 12(4): 046008. doi: 10.1088/1741-2560/12/4/046008
|
[27] |
Lin Zhonglin, Zhang Changshui, Wu Wei, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng, 2007, 54(6): 1172-1176. doi: 10.1109/TBME.2006.889197
|
[28] |
陈小刚, 赵秉, 刘明, 等. 稳态视觉诱发电位脑-机接口控制机械臂系统的设计与实现. 生物医学工程与临床, 2018, 22(3): 20-26.
|
[29] |
陈若男, 文聪聪, 彭玲, 等. 改进 A*算法在机器人室内路径规划中的应用. 计算机应用, 2019, 39(4): 1006-1011. doi: 10.11772/j.issn.1001-9081.2018091977
|
[30] |
Iturrate I, Antelis J M, Kubler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot, 2009, 25(3): 614-627. doi: 10.1109/TRO.2009.2020347
|