Citation: | Yuchao WU, Lan LIN, Jingxuan WANG, Shuicai WU. Application of semantic segmentation based on convolutional neural network in medical images[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 533-540. doi: 10.7507/1001-5515.201906067 |
[1] |
Meiburger K M, Acharya U R, Molinari F. Automated localization and segmentation techniques for B-mode ultrasound images: a review. Comput Biol Med, 2018, 92: 210-235. doi: 10.1016/j.compbiomed.2017.11.018
|
[2] |
Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A survey on deep learning techniques for image and video semantic segmentation. Appl Soft Comput, 2018, 70: 41-65. doi: 10.1016/j.asoc.2018.05.018
|
[3] |
Gu Jiuxiang, Wang Zhenhua, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
|
[4] |
Zhang Qianru, Meng Zhang, Chen Tinghuan, et al. Recent advances in convolutional neural network acceleration. Neurocomputing, 2019, 323: 37-51. doi: 10.1016/j.neucom.2018.09.038
|
[5] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 3431-3440.
|
[6] |
Lateef F, Yassine R. Survey on semantic segmentation using deep learning techniques. Neurocomputing, 2019, 338: 321-348. doi: 10.1016/j.neucom.2019.02.003
|
[7] |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer, 2015: 234-241.
|
[8] |
Zhao Hengshuang, Shi Jianping, Qi Xiaojuan, et al. Pyramid scene parsing network//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017: 2881-2890.
|
[9] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
[10] |
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. arXiv: 1706.05587, (2017-12-05)[2019-06-18]. https://arxiv.org/abs/1706.05587.
|
[11] |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation//Proceedings of the European Conference on Computer Vision, Munich: Springer, 2018: 801-818.
|
[12] |
Bernal J, Kushibar K, Daniel S A, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med, 2019, 95: 64-81. doi: 10.1016/j.artmed.2018.08.008
|
[13] |
Chung S H, Gan K H, Achuthan A, et al. Liver tumor segmentation using triplanar convolutional neural network: a pilot study//10th International Conference on Robotics, Vision, Signal Processing and Power Applications, Singapore: Springer, 2019: 607-614.
|
[14] |
Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV), California: IEEE, 2016: 565-571.
|
[15] |
Ghafoorian M, Mehrtash A, Kapur T, et al. Transfer learning for domain adaptation in MRI: application in brain lesion segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer, 2017: 516-524.
|
[16] |
田苗, 林岚, 张柏雯, 等. 深度学习在神经影像中的应用研究. 中国医疗设备, 2016, 31(12): 4-9. doi: 10.3969/j.issn.1674-1633.2016.12.002
|
[17] |
张柏雯, 林岚, 吴水才. 深度学习在轻度认知障碍转化与分类中的应用分析. 医疗卫生装备, 2017, 38(9): 105-111.
|
[18] |
王海鸥, 刘慧, 郭强, 等. 面向医学图像分割的超像素 U-Net 网络设计. 计算机辅助设计与图形学学报, 2019, 31(6): 1007-1017.
|
[19] |
Chen Yunjie, Cao Zhihui, Cao Chunzheng, et al. A modified U-Net for brain Mr image segmentation//International Conference on Cloud Computing and Security (ICCC 2018), Cham: Springer, 2018: 233-242.
|
[20] |
Nie Dong, Wang Li, Adeli E, et al. 3-D fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans Cybern, 2019, 49(3): 1123-1136. doi: 10.1109/TCYB.2018.2797905
|
[21] |
Wang Shaoyu, Yi Lirong, Qiang Chen, et al. Edge-aware fully convolutional network with CRF-RNN layer for hippocampus segmentation//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing: IEEE, 2019: 803-806.
|
[22] |
Borne L, Mangin J F, Riviere D. Combining 3D U-Net and bottom-up geometric constraints for automatic cortical sulci recognition. Medical Imaging with Deep Learning, 2019. https://openreview.net/forum?id=ryl0VTZCtV.
|
[23] |
Cui Shaoguo, Lei Mao, Jiang Jingfeng, et al. Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthc Eng, 2018: 1-14.
|
[24] |
Anthimopoulos M, Christodoulidis S, Ebner L, et al. Semantic segmentation of pathological lung tissue with dilated fully convolutional networks. IEEE J Biomed Health Inform, 2019, 23(2): 714-722. doi: 10.1109/JBHI.2018.2818620
|
[25] |
Bouget D, Jørgensen A, Kiss G, et al. Semantic segmentation and detection of mediastinal lymph nodes and anatomical structures in CT data for lung cancer staging. Int J Comput Assist Radiol Surg, 2019, 14(6): 977-986. doi: 10.1007/s11548-019-01948-8
|
[26] |
Astono I P, Welsh J S, Chalup S. Adjacent network for semantic segmentation of liver CT scans//2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung: IEEE, 2018: 35-40.
|
[27] |
李智能, 刘任任, 梁光明. 基于卷积神经网络的医学宫颈细胞图像的语义分割. 计算机应用与软件, 2019, 36(11): 152-156. doi: 10.3969/j.issn.1000-386x.2019.11.025
|
[28] |
Tran T, Kwon O H, Kwon K R, et al. Blood cell images segmentation using deep learning semantic segmentation//2018 IEEE International Conference on Electronics and Communication Engineering (ICECE), Xi'an: IEEE, 2018: 13-16.
|
[29] |
Liu Fang, Zhou Zhaoye, Jang H, et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magnetic Resonance in Medicine, 2018, 79(4): 2379-2391. doi: 10.1002/mrm.26841
|
[30] |
Edupuganti V G, Chawla A, Amit K. Automatic optic disk and cup segmentation of fundus images using deep learning//2018 25th IEEE International Conference on Image Processing (ICIP), 2018: 2227-2231.
|
[31] |
Olah C, Arvind S, Johnson I, et al. The building blocks of interpretability. Distill, 2018, 3(3): e10.
|
[32] |
Olah C, Mordvintsev A, Schubert L. Feature visualization. Distill, 2017, 2(11): e7.
|
[33] |
Ding Xiuhua, Charnigo R J, Frederick A S, et al. Evaluating trajectories of episodic memory in normal cognition and mild cognitive impairment: results from ADNI. PLoS One, 2019, 14(2): e0212435. doi: 10.1371/journal.pone.0212435
|
[34] |
林岚, 吴玉超, 宋爽, 等. LIDC/IDRI 影像数据库在肺结节计算机辅助诊断中的研究进展. 医疗卫生装备, 2018, 39(10): 95-99.
|