Issue 3
Mar 2020
Turn off MathJax
Article Contents
Zhihong ZHENG, Chaohua ZHANG, Haisheng LIN, Shaokui ZENG, Xiaoming QIN, Wenhong CAO, Haiyuan CHEN. Wound-healing acceleration of mice skin by Sipunculus nudus extract and its mechanism[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 460-468, 479. doi: 10.7507/1001-5515.201908008
Citation: Zhihong ZHENG, Chaohua ZHANG, Haisheng LIN, Shaokui ZENG, Xiaoming QIN, Wenhong CAO, Haiyuan CHEN. Wound-healing acceleration of mice skin by Sipunculus nudus extract and its mechanism[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 460-468, 479. doi: 10.7507/1001-5515.201908008

Wound-healing acceleration of mice skin by Sipunculus nudus extract and its mechanism

doi: 10.7507/1001-5515.201908008
More Information
  • Corresponding author: ZHANG Chaohua, Email: zhangch2@139.com; LIN Haisheng, Email: haishenglin@163.com
  • Received Date: 02 Aug 2019
  • Rev Recd Date: 31 Mar 2020
  • Publish Date: 17 Mar 2020
  • In order to explore the effect of Sipunculus nudus extract (SNE) on skin wound healing in mice and its mechanism, hemostasis effect of SNE was measured, the mouse skin wound model was established by full-thickness excision. The morphological changes of the wound were observed after the treatment with SNE and the healing rate was measured. The changes of wound histology were observed by hematoxylin eosin (HE) staining, Masson staining and transmission electron microscope (TEM). The expression of cell factors and related proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that the SNE possessed hemostatic function. SNE could obviously improve the healing rate of wound in mouse and shorten time of scab removal compared with the none-treatment (NT) group (P < 0.05).The pathological histology analysis results showed complete epidermal regeneration, with remarkable capillary and collagen fiber observed in the SNE group. The expression level of tumor necrosis factor-α (TNF -α), interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) in SNE group was significantly lower than that of the NT group on 7 d ( P < 0.05). Moreover, compared with the NT group, the gene expressions level of Smad7 was significantly increased and the level of type II TGF-β receptors (TGF-βRII), collagen I (COL1A1) and α-smooth muscle actin (α-SMA) were significantly reduced in the SNE group on 28 d ( P < 0.05), but the difference was not statistically significant compared to Yunnanbaiyao group (PC group) ( P > 0.05). These results indicated that SNE possessed obvious activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to hemostatic function, regulation of inflammatory factors, collagen deposition, collagen fiber remodeling and intervening TGF-β/Smads signal pathway. Therefore, SNE may have promising clinical applications in skin wound repair and scar inhibition.

     

  • loading
  • [1]
    张天蔚, 刘方, 田卫群. 促皮肤创面愈合新型敷料研究现状与进展. 生物医学工程学杂志, 2019, 36(6): 1055-1059, 1068.
    [2]
    Greaves N S, Ashcroft K J, Baguneid M, et al. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci, 2013, 72(03): 206-217. doi: 10.1016/j.jdermsci.2013.07.008
    [3]
    Enoch. S, Leaper D J. Basic science of wound healing. Surgery (Oxford), 2008, 26(02): 31-37. doi: 10.1016/j.mpsur.2007.11.005
    [4]
    欧阳茜茜. 壳聚糖/罗非鱼多肽生物医用材料烫伤修复及止血性能研究. 湛江: 广东海洋大学, 2019.
    [5]
    Gurtner G C, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature, 2008, 453(7193): 314-321. doi: 10.1038/nature07039
    [6]
    于蓉, 岑瑛. TGF-β1/Smad3 信号转导通路与创伤后瘢痕形成. 中国修复重建外科杂志, 2012, 26(3): 330-335.
    [7]
    张桂和, 李理, 赵谋明, 等. 方格星虫营养成分分析及抗疲劳作用研究. 营养学报, 2008, 30(3): 318-320. doi: 10.3321/j.issn:0512-7955.2008.03.024
    [8]
    陈晓华, 于攀, 李世荣, 等. 局部应用. L-精氨酸对糖尿病小鼠创面愈合的影响. 组织工程与重建外科杂志, 2009, 5(4): 205-207. doi: 10.3969/j.issn.1673-0364.2009.08.007
    [9]
    李娜. 星虫多糖的抗辐射作用研究. 上海: 上海海洋大学, 2016.
    [10]
    孙瑞坤, 章超桦, 曾少葵, 等. 方格星虫酶解工艺优化及酶解物免疫活性. 广东海洋大学学报, 2018, 38(3): 54-61. doi: 10.3969/j.issn.1673-9159.2018.03.009
    [11]
    夏乾峰, 谭河林, 覃西, 等. 方格星虫多糖抗菌活性的初步研究. 中国热带医学, 2007, 7(12): 2192-2193. doi: 10.3969/j.issn.1009-9727.2007.12.007
    [12]
    Zhang C X, Dai Z R, Cai Q X, et al. Anti-inflammatory and anti-nociceptive activities of Sipunculus nudus L. extract. J Ethnopharmacol, 2011, 137(03): 1177-1182. doi: 10.1016/j.jep.2011.07.039
    [13]
    苏秀榕, 孙蓓, 李研妍, 等. 星虫胶原蛋白的生物学特性研究. 天然产物研究与开发, 2009, 21(1): 48-52. doi: 10.3969/j.issn.1001-6880.2009.01.011
    [14]
    郑志鸿, 章超桦, 林海生, 等. 方格星虫酶解物对小鼠皮肤创伤修复的作用. 广东海洋大学学报, 2020, 40(1): 97-103. doi: 10.3969/j.issn.1673-9159.2020.01.013
    [15]
    贺争鸣, 里根平, 朱德生, 等. 实验动物护理和使用指南. 北京: 科学出版社, 2016: 112-468.
    [16]
    章超桦, 铃木健, 吉江由美子. 沙虫干呈味及功能性成分研究. 湛江海洋大学学报, 2000, 20(02): 24-27.
    [17]
    李伟, 姜玉新, 陆晓华, 等. 牛磺酸对 STZ 诱导的糖尿病大鼠伤口愈合的影响. 皖南医学院学报, 2019, 38(6): 515-518. doi: 10.3969/j.issn.1002-0217.2019.06.002
    [18]
    胡笑丛. 星虫微量元素含量的测定. 水产科学, 2005, 24(6): 12-14. doi: 10.3969/j.issn.1003-1111.2005.06.005
    [19]
    崔飞艳, 王斌, 魏立, 等. 藻酸钙敷料的促凝血机制. 中国组织工程研究, 2015, 19(47): 7681-7686.
    [20]
    林雁鸿, 周清清, 李春霖, 等. 创伤修复机制和治疗进展. 中国现代药物应用, 2019, 13(23): 230-232.
    [21]
    Eming S A, Krieg T, Davidson J M. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol, 2007, 127(3): 514-525. doi: 10.1038/sj.jid.5700701
    [22]
    林康, 苏海燕, 虞庆, 等. 苏拉明通过抑制纤维增生和炎症反应减轻小鼠的瘢痕增生. 中国病理生理杂志, 2019, 35(11): 2070-2077. doi: 10.3969/j.issn.1000-4718.2019.11.022
    [23]
    Redd M J, Cooper L, Wood W, et al. Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans R Soc Lond B Biol Sci, 2004, 359(1445): 777-784. doi: 10.1098/rstb.2004.1466
    [24]
    Roh J L, Lee J, Kim E H, et al. Plasticity of oral mucosal cell sheets for accelerated and scarless skin wound healing[J]. Oral Oncol, 2017, 75: 81-88. doi: 10.1016/j.oraloncology.2017.10.024
    [25]
    Arno A I, Gauglitz G G, Barret J P, et al. New molecular medicine-based scar management strategies. Burns, 2014, 40(4): 539-551. doi: 10.1016/j.burns.2013.11.010
    [26]
    Györfi A H, Matei A E, Distler J H W. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol, 2018, 68-69:8-27. doi: 10.1016/j.matbio.2017.12.016
    [27]
    Nolte M, Margadant C. Controlling immunity and inflammation through integrin-dependent regulation of TGF-β. Trends in Cell Biol, 2020, 30(1): 49-59. doi: 10.1016/j.tcb.2019.10.002
    [28]
    Weiskirchen R, Weiskirchen S and Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Molecular Aspects of Medicine, 2019, 65:2-15. doi: 10.1016/j.mam.2018.06.003
    [29]
    涂鹏程, 郭杨, 郑苏阳, 等. 关节软骨修复机制中相关信号分子的研究进展. 生物医学工程学杂志, 2019, 36(2): 343-348.
    [30]
    Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: from development to senescence. Adv Drug Delivery Rev, 2019,146: 325-343. doi: 10.1016/j.addr.2018.04.011
    [31]
    Tang B, Zhu B, Liang Y Y, et al. Asiaticoside suppresses collagen expression and TGF-beta/Smad signaling through inducing Smad7 and inhibiting TGF-beta RI and TGF-beta RII in keloid fibroblasts. Arch Dermatol Res, 2011, 303(8): 563-572. doi: 10.1007/s00403-010-1114-8
    [32]
    韩士超, 张健, 李珍珍, 等. TNFα 诱导蛋白 3 在人真皮成纤维细胞向肌成纤维细胞表型转化中的作用及机制. 中国医师杂志, 2019, 21(4): 495-498, 502. doi: 10.3760/cma.j.issn.1008-1372.2019.04.004
    [33]
    Pan Xiaohua, Li Jiahong, Tu Xing, et al. Lysine-specific demethylase-1 regulates fibroblast activation in pulmonary fibrosis via TGF-β1/Smad3 pathway. Pharmacol Res, 2020,152: 104592. doi: 10.1016/j.phrs.2019.104592
  • 加载中

Catalog

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(480) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return