Citation: | Guoping QIN, Shuangyan LI, Guizhi XU. Research progress on multiscale entropy algorithm and its application in neural signal analysis[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 541-548. doi: 10.7507/1001-5515.201908044 |
[1] |
Baumert M, Porta A, Cichocki A. Biomedical signal processing: from a conceptual framework to clinical applications. Proceedings of the IEEE, 2016, 104(2): 213-214. doi: 10.1109/JPROC.2016.2517929
|
[2] |
Liu Yunxiao, Lin Youfang, Wang Jing, et al. Refined generalized multiscale entropy analysis for physiological signals. Physica A: Statistical Mechanics and its Applications, 2018, 490: 975-985. doi: 10.1016/j.physa.2017.08.047
|
[3] |
Mateos D M, Guevara E R, Wennberg R, et al. Measures of entropy and complexity in altered states of consciousness. Cogn Neurodyn, 2018, 12(1): 73-84. doi: 10.1007/s11571-017-9459-8
|
[4] |
Gao Zhongke, Zhang Jun, Dang Weidong, et al. Multivariate empirical mode decomposition and multiscale entropy analysis of EEG signals from SSVEP-based BCI system. EPL, 2018, 122(4): 40010. doi: 10.1209/0295-5075/122/40010
|
[5] |
张汉勇, 孟庆芳, 杜蕾, 等. 基于加权复杂网络度熵和的癫痫发作检测方法. 中国生物医学工程学报, 2019, 38(3): 273-280. doi: 10.3969/j.issn.0258-8021.2019.03.003
|
[6] |
Cao Zehong, Lin C T. Inherent fuzzy entropy for the improvement of EEG complexity evaluation. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 1032-1035. doi: 10.1109/TFUZZ.2017.2666789
|
[7] |
Mesin L. Estimation of complexity of sampled biomedical continuous time signals using approximate entropy. Front Physiol, 2018, 9: 1-15. doi: 10.3389/fphys.2018.00001
|
[8] |
Sun Rui, Wong W W, Wang Jing, et al. Changes in electroencephalography complexity using a brain computer interface-motor observation training in chronic stroke patients: a fuzzy approximate entropy analysis. Front Hum Neurosci, 2017, 11: 1-13.
|
[9] |
Kang Jiannan, Chen Huimin, Li Xin, et al. EEG entropy analysis in autistic children. Journal of Clinical Neuroscience, 2019, 62: 199-206. doi: 10.1016/j.jocn.2018.11.027
|
[10] |
Costa M, Goldberger A L, Peng C K. Multiscale entropy to distinguish physiologic and synthetic RR time series//29th Computers in Cardiology (CinC), Memphis: IEEE, 2002, 29: 137-140.
|
[11] |
Kaur Y, Ouyang Guang, Junge M, et al. The reliability and psychometric structure of multi-scale entropy measured from EEG signals at rest and during face and object recognition tasks. J Neurosci Methods, 2019, 326: 108343. doi: 10.1016/j.jneumeth.2019.108343
|
[12] |
Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol, 2000, 278(6): H2039-H2049. doi: 10.1152/ajpheart.2000.278.6.H2039
|
[13] |
Ahmed M U, Mandic D P. Multivariate multiscale entropy analysis. IEEE Signal Process Lett, 2012, 19(2): 91-94. doi: 10.1109/LSP.2011.2180713
|
[14] |
Wu S D, Wu C W, Lee K Y, et al. Modified multiscale entropy for short-term time series analysis. Physica A: Statistical Mechanics and its Applications, 2013, 392(23): 5865-5873. doi: 10.1016/j.physa.2013.07.075
|
[15] |
Wu S D, Wu C W, Lin S G, et al. Time series analysis using composite multiscale entropy. Entropy, 2013, 15(3): 1069-1084. doi: 10.3390/e15031069
|
[16] |
Wu S D, Wu C W, Lin S G, et al. Analysis of complex time series using refined composite multiscale entropy. Phys Lett A, 2014, 378(20): 1369-1374. doi: 10.1016/j.physleta.2014.03.034
|
[17] |
Humeau-Heurtier A. Multivariate refined composite multiscale entropy analysis. Phys Lett A, 2016, 380(16): 1426-1431. doi: 10.1016/j.physleta.2016.02.029
|
[18] |
Humeau-Heurtier A. Multivariate generalized multiscale entropy analysis. Entropy, 2016, 18(11): 411. doi: 10.3390/e18110411
|
[19] |
Azami H, Escudero J. Refined composite multivariate generalized multiscale fuzzy entropy: a tool for complexity analysis of multichannel signals. Physica A: Statistical Mechanics and its Applications, 2017, 465: 261-276. doi: 10.1016/j.physa.2016.07.077
|
[20] |
Li Peng, Ji Lizhen, Yan Chang, et al. Coupling between short-term heart rate and diastolic period is reduced in heart failure patients as indicated by multivariate entropy analysis//41st Computing in Cardiology(CinC), Cambridge: IEEE, 2014, 41: 97-100.
|
[21] |
Costa M, Goldberger A. Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series. Entropy, 2015, 17(3): 1197-1203. doi: 10.3390/e17031197
|
[22] |
Azami H, Rostaghi M, Abasolo D, et al. Refined composite multiscale dispersion entropy and its application to biomedical signals. IEEE Trans Biomed Eng, 2017, 64(12): 2872-2879. doi: 10.1109/TBME.2017.2679136
|
[23] |
Azami H, Escudero J. Coarse-graining approaches in univariate multiscale sample and dispersion entropy. Entropy, 2018, 20(2): 138. doi: 10.3390/e20020138
|
[24] |
Azami H, Kinney-Lang E, Ebied A, et al. Multiscale dispersion entropy for the regional analysis of resting-state magnetoencephalogram complexity in Alzheimer's disease//2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo: IEEE, 2017: 3182-3185.
|
[25] |
Rostaghi M, Azami H. Dispersion entropy: a measure for time-series analysis. IEEE Signal Process Lett, 2016, 23(5): 610-614. doi: 10.1109/LSP.2016.2542881
|
[26] |
Azami H, Fernández A, Escudero J. Multivariate multiscale dispersion entropy of biomedical times series. Entropy, 2019, 21(9): 913. doi: 10.3390/e21090913
|
[27] |
倪力, 曹建庭, 王如彬. 自适应多尺度熵在脑死亡诊断中的应用. 动力学与控制学报, 2014, 12(1): 74-78. doi: 10.6052/1672-6553-2013-086
|
[28] |
李昕, 谢佳利, 侯永捷, 等. 改进的多尺度熵算法及其情感脑电特征提取性能分析. 高技术通讯, 2015, 25(10-11): 865-870.
|
[29] |
Arunachalam S P, Kapa S, Mulpuru S K, et al. Improved multiscale entropy technique with nearest-neighbor moving-average kernel for nonlinear and nonstationary short-time biomedical signal analysis. J Healthc Eng, 2018, 2018: 1-13.
|
[30] |
Silva L V, Duque J J, Felipe J C, et al. Two-dimensional multiscale entropy analysis: applications to image texture evaluation. Signal Processing, 2018, 147: 224-232. doi: 10.1016/j.sigpro.2018.02.004
|
[31] |
李昕, 安占周, 李秋月, 等. 加权多重多尺度熵及其在孤独症儿童脑电信号分析中的应用. 生物医学工程学杂志, 2019, 36(1): 33-39, 49.
|
[32] |
Ahmed M, Chanwimalueang T, Thayyil S, et al. A multivariate multiscale fuzzy entropy algorithm with application to uterine EMG complexity analysis. Entropy, 2016, 19(1): 1-18. doi: 10.3390/e19010001
|
[33] |
Michalopoulos K, Bourbakis N. Application of multiscale entropy on EEG signals for emotion detection//2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando: IEEE, 2017: 341-344.
|
[34] |
Liu Tian, Chen Yanni, Chen Desheng, et al. Altered electroencephalogram complexity in autistic children shown by the multiscale entropy approach. Neuroreport, 2017, 28(3): 169-173. doi: 10.1097/WNR.0000000000000724
|
[35] |
Hikmat H, Maha A, Enas A. Brain complexity in children with mild and severe autism spectrum disorders: analysis of multiscale entropy in EEG. Brain Topogr, 2019, 32(5): 914-921. doi: 10.1007/s10548-019-00711-1
|
[36] |
Jaworska N, WANG Hongye, Smith D M, et al. Pre-treatment EEG signal variability is associated with treatment success in depression. Neuroimage Clin, 2018, 17: 368-377. doi: 10.1016/j.nicl.2017.10.035
|
[37] |
Low I, Kuo P C, Liu Y H, et al. Altered brain complexity in women with primary dysmenorrhea: a resting-state magneto-encephalography study using multiscale entropy analysis. Entropy, 2017, 19(12): 680-707. doi: 10.3390/e19120680
|
[38] |
范文兵, 刘雪峰, 赵艳阳. 基于单通道脑电信号的自动睡眠分期. 计算机应用, 2017, 37(s2): 318-321.
|
[39] |
刘雪峰, 马州生, 赵艳阳, 等. 基于MSE-PCA的脑电睡眠分期方法研究. 电子技术应用, 2017, 43(9): 22-24, 29.
|
[40] |
叶仙, 胡洁, 田畔, 等. 基于精细复合多尺度熵与支持向量机的睡眠分期. 上海交通大学学报, 2019, 53(3): 321-326.
|
[41] |
Tian Pan, Hu Jie, Qi Jin, et al. A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture. Biocybernetics and Biomedical Engineering, 2017, 37(2): 263-271. doi: 10.1016/j.bbe.2017.01.005
|
[42] |
王瑶, 黄国睿, 谢康宁. 脑电多尺度熵用于睡意检测的初步研究. 医疗卫生装备, 2016, 37(12): 1-6.
|
[43] |
Sheehan T C, Sreekumar V, Inati S K, et al. Signal complexity of human intracranial EEG tracks successful associative-memory formation across individuals. J Neurosci, 2018, 38(7): 1744-1755. doi: 10.1523/JNEUROSCI.2389-17.2017
|
[44] |
Wang Chunhao, Moreau D, Yang Chengta, et al. Aerobic exercise modulates transfer and brain signal complexity following cognitive training. Biol Psychol, 2019, 144: 85-98. doi: 10.1016/j.biopsycho.2019.03.012
|
[45] |
Mcintosh A R. Neurocognitive aging and brain signal complexity. bioRxiv, 2018. DOI: https://doi.org/10.1101/259713.
|
[46] |
Grundy J G, Barker R M, Anderson J E, et al. The relation between brain signal complexity and task difficulty on an executive function task. Neuroimage, 2019, 198: 104-113. doi: 10.1016/j.neuroimage.2019.05.045
|
[47] |
Szostakiwskyj J M H, Willatt S E, Cortese F, et al. The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance. PLoS One, 2017, 12(7): e0181894. doi: 10.1371/journal.pone.0181894
|
[48] |
Li Xuanyu, Zhu Zhaojun, Zhao Weina, et al. Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer’s disease: a multi-scale entropy analysis. Biomed Opt Express, 2018, 9(4): 1916-1929. doi: 10.1364/BOE.9.001916
|
[49] |
Wang D J J, Jann K, Fan Chang, et al. Neurophysiological basis of multi-scale entropy of brain complexity and its relationship with functional connectivity. Front Neurosci, 2018, 12: 1-14. doi: 10.3389/fnins.2018.00001
|
[50] |
邹晓红, 张轶勃, 孙延贞. 基于局部均值分解和多尺度熵的运动想象脑电信号特征提取方法. 高技术通讯, 2018, 28(1): 22-28. doi: 10.3772/j.issn.1002-0470.2018.01.004
|
[51] |
Luo Haowen, Qiu Taorong, Liu Chao, et al. Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy. Biomed Signal Process Control, 2019, 51: 50-58. doi: 10.1016/j.bspc.2019.02.005
|
[52] |
Li Mingai, Wang Ruotu, Yang Jinfu, et al. An improved refined composite multivariate multiscale fuzzy entropy method for MI-EEG feature extraction. Comput Intell Neurosci, 2019, 2019: 1-12.
|