Citation: | Dingding XIANG, Jia ZHU, Song WANG, Zhenhua LIAO, Weiqiang LIU. A review on the current state of ball-on-socket type artificial lumbar disc prosthesis[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 527-532, 540. doi: 10.7507/1001-5515.201909044 |
[1] |
Vos T, Barber R M, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet, 2015, 386(9995): 743-800. doi: 10.1016/S0140-6736(15)60692-4
|
[2] |
Blackwell D L, Lucas J W, Clarke T C. Summary health statistics for U.S. adults: National Health Interview Survey, 2012. Vital Health Stat, 2014, 260(260):1-171.
|
[3] |
Song Jian, Liao Zhenhua, Shi Hongyu, et al. Fretting wear study of PEEK-based composites for bio-implant application. Tribol Lett, 2017, 65(4): Article number 150. doi: 10.1007/s11249-017-0931-8
|
[4] |
Formica M, Divano S, Cavagnaro L, et al. Lumbar total disc arthroplasty: outdated surgery or here to stay procedure? A systematic review of current literature. J Orthopaed Traumatol, 2017, 18(3): 197-215. doi: 10.1007/s10195-017-0462-y
|
[5] |
Salzmann S N, Plais N, Shue J, et al. Lumbar disc replacement surgery—successes and obstacles to widespread adoption. Curr Rev Musculoskelet Med, 2017, 10(2): 153-159. doi: 10.1007/s12178-017-9397-4
|
[6] |
Radcliff K, Spivak J, Darden B N, et al. Five-year reoperation rates of 2-level lumbar total disk replacement versus fusion: results of a prospective, randomized clinical trial. Clinical Spine Surg, 2018, 31(1): 37-42. doi: 10.1097/BSD.0000000000000476
|
[7] |
张振军, 李阳, 廖振华, 等. 有限元法在腰椎生物力学应用中的研究进展和展望. 生物医学工程学杂志, 2016, 33(6): 1196-1202. doi: 10.7507/1001-5515.20160189
|
[8] |
Yue J J, Garcia R, Blumenthal S, et al. Five-year results of a randomized controlled trial for lumbar artificial discs in single-level degenerative disc disease. Spine (Phila Pa 1976), 2019: 1.
|
[9] |
Bono C M, Garfin S R. History and evolution of disc replacement. Spine J, 2004, 4(6 Suppl): S145-S150.
|
[10] |
Abi-Hanna D, Kerferd J, Phan K, et al. Lumbar disk arthroplasty for degenerative disk disease: literature review. World Neurosurg, 2018, 109: 188-196. doi: 10.1016/j.wneu.2017.09.153
|
[11] |
Reeks J, Liang H. Materials and their failure mechanisms in total disc replacement. Lubricants, 2015, 3(2): 346-364. doi: 10.3390/lubricants3020346
|
[12] |
Veruva S Y, Steinbeck M J, Toth J, et al. Which design and biomaterial factors affect clinical wear performance of total disc replacements? A systematic review. Clin Orthop Relat Res, 2014, 472(12): 3759-3769. doi: 10.1007/s11999-014-3751-2
|
[13] |
Lu S, Hai Y, Kong C, et al. An 11-year minimum follow-up of the Charite III lumbar disc replacement for the treatment of symptomatic degenerative disc disease. Eur Spine J, 2015, 24(9): 2056-2064. doi: 10.1007/s00586-015-3939-5
|
[14] |
van Ooij A, Oner F C, Verbout A J. Complications of artificial disc replacement: A report of 27 patients with the SB Charité disc. J Spinal Disord Tech, 2003, 16(4): 369-383. doi: 10.1097/00024720-200308000-00009
|
[15] |
Punt I M, Visser V M, van Rhijn L W, et al. Complications and reoperations of the SB Charite lumbar disc prosthesis: experience in 75 patients. Eur Spine J, 2008, 17(1): 36-43. doi: 10.1007/s00586-007-0506-8
|
[16] |
Choi J I, Kim S H, Lim D J, et al. Biomechanical changes in disc pressure and facet strain after lumbar spinal arthroplasty with CHARITETM in the human cadaveric spine under physiologic compressive follower preload. Turk Neurosurg, 2017, 27(2): 252-258.
|
[17] |
Siepe C J, Heider F, Wiechert K, et al. Mid- to long-term results of total lumbar disc replacement: a prospective analysis with 5- to 10-year follow-up. Spine J, 2014, 14(8): 1417-1431. doi: 10.1016/j.spinee.2013.08.028
|
[18] |
Yue J J, Garcia R J, Miller L E. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain. Med Dev (Auckl), 2016, 9: 75-84.
|
[19] |
Girardi F, Shein D, Shue J. Evaluation of aesculap implant systems activ-L artificial disc for the treatment of degenerative disc disease. Expert Rev Med Dev, 2016, 13(12): 1069-1072. doi: 10.1080/17434440.2016.1256771
|
[20] |
Mathews H H, LeHuec J, Friesem T, et al. Design rationale and biomechanics of Maverick total disc arthroplasty with early clinical results. Spine J, 2004, 4(6): S268-S275. doi: 10.1016/j.spinee.2004.07.017
|
[21] |
Assaker R, Ritter-Lang K, Vardon D, et al. Maverick total disc replacement in a real-world patient population: A prospective, multicentre, observational study. Eur Spine J, 2015, 24(9): 2047-2055. doi: 10.1007/s00586-015-3918-x
|
[22] |
Bastien J, Lecomte Y, Willems S. A retrospective review of 345 patients with lumbar tdr in two years follow-up over 10 years of practice in one belgian clinical center: Results. Acta Orthopaedica Belgica, 2016, 82(3): 440-455.
|
[23] |
Pettine K, Ryu R, Techy F. Why lumbar artificial disk replacements (LADRS) fail. Clin Spine Surg, 2017, 30(6): E743-E747. doi: 10.1097/BSD.0000000000000310
|
[24] |
Guyer R D, Pettine K, Roh J S, et al. Five-year follow-up of a prospective, randomized trial comparing two lumbar total disc replacements. Spine (Phila Pa 1976), 2016, 41(1): 3-8. doi: 10.1097/BRS.0000000000001168
|
[25] |
Malham G M, Parker R M. Early experience with lateral lumbar total disc replacement: Utility, complications and revision strategies. J Clin Neurosci, 2017, 39: 176-183. doi: 10.1016/j.jocn.2017.01.033
|
[26] |
Yue J J, Garcia R. Five-year results of a randomized controlled trial for lumbar artificial discs in single-level degenerative disc disease. Spine J, 2017, 17(10): S70.
|
[27] |
Pokorny G, Marchi L, Amaral R, et al. Lumbar total disc replacement by the lateral approach-up to 10 years follow-up. World Neurosurg, 2019, 122: e325-e333. doi: 10.1016/j.wneu.2018.10.033
|
[28] |
Grupp T M, Yue J J, Jr R G, et al. Evaluation of impingement behaviour in lumbar spinal disc arthroplasty. Eur Spine J, 2015, 24(9): 2033-2046. doi: 10.1007/s00586-014-3381-0
|
[29] |
Eckold D G, Dearn K D, Shepherd D E T. The evolution of polymer wear debris from total disc arthroplasty. Biotribology, 2015, 1-2: 42-50.
|
[30] |
Hyde P J, Fisher J, Hall R M. Wear characteristics of an unconstrained lumbar total disc replacement under a range of in vitro test conditions. J Biomed Mater Res Part B Appl Biomater, 2017, 105(1): 46-52. doi: 10.1002/jbm.b.33456
|
[31] |
Wenzel S A, Shepherd D E. Contact stresses in lumbar total disc arthroplasty. Biomed Mater Eng, 2007, 17(3): 169-173.
|
[32] |
Moghadas P, Mahomed A, Hukins D W L, et al. Friction in metal-on-metal total disc arthroplasty: Effect of ball radius. J Biomech, 2012, 45(3): 504-509. doi: 10.1016/j.jbiomech.2011.11.045
|
[33] |
Hart R A, DePasse J M, Daniels A H. Failure to launch: what the rejection of lumbar total disk replacement tells us about American spine surgery. Clin Spine Surg, 2017, 30(6): E759-E764. doi: 10.1097/BSD.0000000000000415
|
[34] |
Mróz A, Skalski K, Walczyk W. New lumbar disc endoprosthesis applied to the patient's anatomic features. Acta Bioeng Biomech, 2015, 17(2): 25-34.
|
[35] |
Mróz A, Wiśniewski T, Skalski K. Effect of selective laser melting technology on the tribological properties of the prototype of intervertebral disc endoprothesis. Inżynieria Powierzchni, 2016, 2: 24-30.
|
[36] |
Mróz A B, Lapaj L, Wisniewski T, et al. Friction and wear of the intervertebral disc endoprosthesis manufactured with use of selective laser melting process. Rapid Prototyping J, 2017, 23(6): 1032-1042. doi: 10.1108/RPJ-11-2015-0171
|