Citation: | Xiuling LIU, Shuaishuai QI, Peng XIONG, Jing LIU, Hongrui WANG, Jianli YANG. An automatic pulmonary nodules detection algorithm with multi-scale information fusion[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 434-441. doi: 10.7507/1001-5515.201910047 |
[1] |
陈金东. 中国各类癌症的发病率和死亡率现状及发展趋势. 遵义医学院学报, 2018, 41(6): 5-14.
|
[2] |
陈首英, 刘福林, 庞志刚, 等. 肺癌病人5年生存率及生存因素分析. 预防医学论坛, 2004, 10(1): 1-3.
|
[3] |
Jacobs C, van Rikxoort E M, Twellmann T, et al. Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Med Image Analysis, 2014, 18(2): 374-384. doi: 10.1016/j.media.2013.12.001
|
[4] |
Santos A M, Filho A O D C, Silva A C, et al. Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, Tsallis entropy and SVM. Engineering Applications of Artificial Intelligence, 2014, 36(3): 27-39.
|
[5] |
Fan Weikang, Jiang Huiqin, Ma Ling, et al. A modified faster R-CNN method to improve the performance of the pulmonary nodule detection//Tenth International Conference on Digital Image Processing (ICDIP 2018), Shanghai, 2018. DOI: 10.1117/12.2502893.
|
[6] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition//International Conference on Learning Representations 2015 (ICLR 2015). San Diego, 2015. arXiv: 1409.1556.
|
[7] |
葛治文. 基于深度学习的CT图像肺结节检测. 南京: 东南大学, 2018.
|
[8] |
Pezeshk A, Hamidian S, Petrick N, et al. 3D convolutional neural networks for automatic detection of pulmonary nodules in chest CT. IEEE Journal of Biomedical & Health Informatics, 2019, 23(5): 2080-2090.
|
[9] |
Xie hongtao, Yang Dongbao, Sun Nannan, et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognition, 2019, 85: 109-119. doi: 10.1016/j.patcog.2018.07.031
|
[10] |
Neubeck A, Gool L V. Efficient non-maximum suppression//18th International Conference on Pattern Recognition (ICPR'06), Hong Kong: IEEE, 2006: 850-855.
|
[11] |
Armato S G, Roberts R Y, McNitt-Gray M F, et al. The Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI)[DB]. (2000-04-10)[2019-10-25]. https:// wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI.
|
[12] |
Zang S F, Wen L Y, Bian X, et al. Single-shot refinement neural network for object detection//Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018: 4203-4212.
|
[13] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 39(6): 1137-1149.
|
[14] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Computer Vision and Pattern Recognition, 2017, 45(3): 2117-2125.
|