Citation: | Geer TIAN, Mingyue ZHAO, Junteng ZHOU, Yue QUAN, Wenchao WU, Xiaojing LIU. The potential role of calnexin in the activation of cardiac fibroblasts[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 450-459. doi: 10.7507/1001-5515.202001052 |
[1] |
Li Y, Li Z, Zhang C, et al. Cardiac fibroblast-specific activating transcription factor 3 protects against heart failure by suppressing MAP2K3-p38 signaling. Circulation, 2017, 135(21): 2041-2057. doi: 10.1161/CIRCULATIONAHA.116.024599
|
[2] |
Ranjan P, Kumari R, Verma S K. Cardiac fibroblasts and cardiac fibrosis: Precise role of exosomes. Front Cell Dev Biol, 2019, 7: 318. doi: 10.3389/fcell.2019.00318
|
[3] |
Liu T, Wen H, Li H, et al. Oleic acid attenuates Ang II (angiotensin II)-induced cardiac remodeling by inhibiting FGF23(fibroblast growth factor 23) expression in mice. Hypertension, 2020, 75(3): Hypertensionaha119.14167.
|
[4] |
Horckmans M, Bianchini M, Santovito D, et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis, and cardiac function after myocardial infarction. Circulation, 2018, 137(9): 948-960. doi: 10.1161/CIRCULATIONAHA.117.028833
|
[5] |
Farris S D, Don C, Helterline D, et al. Cell-specific pathways supporting persistent fibrosis in heart failure. J Am Coll Cardiol, 2017, 70(3): 344-354. doi: 10.1016/j.jacc.2017.05.040
|
[6] |
Nomura S, Satoh M, Fujita T, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun, 2018, 9(1): 4435. doi: 10.1038/s41467-018-06639-7
|
[7] |
Chen S, Zhang Y, Lighthouse J K, et al. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. Circulation, 2020, 141(3): 217-233. doi: 10.1161/CIRCULATIONAHA.119.042178
|
[8] |
Xia P, Wang S, Xiong Z, et al. The ER membrane adaptor ERAdP senses the bacterial second messenger c-di-AMP and initiates anti-bacterial immunity. Nat Immunol, 2018, 19(2): 141-150. doi: 10.1038/s41590-017-0014-x
|
[9] |
Song S, Tan J, Miao Y, et al. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol, 2018, 233(5): 3867-3874. doi: 10.1002/jcp.26137
|
[10] |
Park S, Lim W, Bazer F W, et al. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. J Cell Physiol, 2018, 233(4): 3055-3065. doi: 10.1002/jcp.26054
|
[11] |
Shih Y C, Chen C L, Zhang Y, et al. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ Res, 2018, 122(8): 1052-1068. doi: 10.1161/CIRCRESAHA.117.312130
|
[12] |
Yao Y, Lu Q, Hu Z, et al. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat Commun, 2017, 8(1): 133. doi: 10.1038/s41467-017-00171-w
|
[13] |
Pinkaew D, Chattopadhyay A, King M D, et al. Fortilin binds IRE1alpha and prevents ER stress from signaling apoptotic cell death. Nat Commun, 2017, 8(1): 18. doi: 10.1038/s41467-017-00029-1
|
[14] |
Misaka T, Murakawa T, Nishida K, et al. FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. J Mol Cell Cardiol, 2018, 114: 93-104. doi: 10.1016/j.yjmcc.2017.11.004
|
[15] |
Hou X, Fu M, Cheng B, et al. Galanthamine improves myocardial ischemia-reperfusion-induced cardiac dysfunction, endoplasmic reticulum stress-related apoptosis, and myocardial fibrosis by suppressing AMPK/Nrf2 pathway in rats. Ann Transl Med, 2019, 7(22): 634. doi: 10.21037/atm.2019.10.108
|
[16] |
Li J, Zhao Y, Zhou N, et al. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in diabetes mellitus by inhibiting endoplasmic reticulum stress. J Diabetes Res, 2019, 2019: 7869318.
|
[17] |
Binder P, Wang S, Radu M, et al. Pak2 as a novel therapeutic target for cardioprotective endoplasmic reticulum stress response. Circ Res, 2019, 124(5): 696-711. doi: 10.1161/CIRCRESAHA.118.312829
|
[18] |
Jung J, Eggleton P, Robinson A, et al. Calnexin is necessary for T cell transmigration into the central nervous system. JCI Insight, 2018, 3(5): e98410. doi: 10.1172/jci.insight.98410
|
[19] |
Ryan D, Carberry S, Murphy A C, et al. Calnexin, an ER stress-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. J Transl Med, 2016, 14(1): 196. doi: 10.1186/s12967-016-0948-z
|
[20] |
Fan Y, Simmen T. Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells, 2019, 8(9): 1071. doi: 10.3390/cells8091071
|
[21] |
Nakao H, Seko A, Ito Y, et al. PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin. Biochem Biophys Res Commun, 2017, 487(3): 763-767. doi: 10.1016/j.bbrc.2017.04.139
|
[22] |
Lynes E M, Bui M, Yap M C, et al. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J, 2012, 31(2): 457-470. doi: 10.1038/emboj.2011.384
|
[23] |
Lakkaraju A K, Abrami L, Lemmin T, et al. Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO J, 2012, 31(7): 1823-1835. doi: 10.1038/emboj.2012.15
|
[24] |
Budd G. On diseases of the liver. 2nd ed. London: John Churchill, 1852.
|
[25] |
Xin Y, Wu W, Qu J, et al. Inhibition of mitofusin-2 promotes cardiac fibroblast activation via the PERK/ATF4 pathway and reactive oxygen species. Oxid Med Cell Longev, 2019, 2019: Article ID 3649808.
|
[26] |
Xu S, Xiao Y, Zeng S, et al. Piperlongumine inhibits the proliferation, migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm Res, 2018, 67(3): 233-243. doi: 10.1007/s00011-017-1112-9
|
[27] |
Guo Y, Gupte M, Umbarkar P, et al. Entanglement of GSK-3beta, beta-catenin and TGF-beta1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol, 2017, 110: 109-120. doi: 10.1016/j.yjmcc.2017.07.011
|
[28] |
Olgar Y, Ozdemir S, Turan B. Induction of endoplasmic reticulum stress and changes in expression levels of Zn2+-transporters in hypertrophic rat heart. Mol Cell Biochem, 2018, 440(1-2): 209-219. doi: 10.1007/s11010-017-3168-9
|
[29] |
Senft D, Ronai Z A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci, 2015, 40(3): 141-148. doi: 10.1016/j.tibs.2015.01.002
|
[30] |
Yuan Y, Zhang Y, Han X, et al. Relaxin alleviates TGFbeta1-induced cardiac fibrosis via inhibition of Stat3-dependent autophagy. Biochem Biophys Res Commun, 2017, 493(4): 1601-1607. doi: 10.1016/j.bbrc.2017.09.110
|
[31] |
Liu X, Shan X, Chen H, et al. Stachydrine ameliorates cardiac fibrosis through inhibition of angiotensin Ⅱ/transformation growth factor beta1 fibrogenic axis. Front Pharmacol, 2019, 10: 538. doi: 10.3389/fphar.2019.00538
|
[32] |
Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest, 2017, 127(10): 3770-3783. doi: 10.1172/JCI94753
|