Citation: | HUANG Kang, ZHU Mei-ting, ZHANG Fei-peng, XU Zhi-long, WANG Hong-tao, XIAO Kui, WU Jun-sheng. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctional electrocatalyst for hydrogen evolution and oxygen evolution reaction[J]. JOURNAL OF MECHANICAL ENGINEERING, 2018, 4(6): 107-115. |
[1] |
Lewis N S, Nocera D G. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA, 2006, 103(43): 15729 doi: 10.1073/pnas.0603395103
|
[2] |
Bard A J, Fox M A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res, 1995, 28(3): 141 doi: 10.1021/ar00051a007
|
[3] |
Dou S, Li X Y, Tao L, et al. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem Commun, 2016, 52(62): 9727 doi: 10.1039/C6CC05244D
|
[4] |
Zhang X, Liu S W, Zang Y P, et al. Co/Co9S8@ S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy, 2016, 30: 93 doi: 10.1016/j.nanoen.2016.09.040
|
[5] |
Zhang J, Wang T, Pohl D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall‐water‐splitting activity. Angew Chem Int Ed, 2016, 55(23): 6702 doi: 10.1002/anie.201602237
|
[6] |
Fang Y H, Liu Z P. Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J Am Chem Soc, 2010, 132(51): 18214 doi: 10.1021/ja1069272
|
[7] |
Jiang J, Zhang A L, Li L L, et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J Power Sources, 2015, 278: 445 doi: 10.1016/j.jpowsour.2014.12.085
|
[8] |
Reier T, Pawolek Z, Cherevko S, et al. Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER). J Am Chem Soc, 2015, 137(40): 13031 doi: 10.1021/jacs.5b07788
|
[9] |
Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Commun, 2014, 5: 4477 doi: 10.1038/ncomms5477
|
[10] |
Nong H N, Gan L, Willinger E, et al. IrOx core-shell nanocatalysts for cost-and energy‒efficient electrochemical water splitting. Chem Sci, 2014, 5(8): 2955 doi: 10.1039/C4SC01065E
|
[11] |
Li X Z, Fang Y Y, Lin X Q, et al. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. J Mater Chem A, 2015, 3(33): 17392 doi: 10.1039/C5TA03900B
|
[12] |
Li L L, Tian T, Jiang J, et al. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J Power Sources, 2015, 294: 103 doi: 10.1016/j.jpowsour.2015.06.056
|
[13] |
Jiao L, Zhou Y X, Jiang H L. Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Sci, 2016, 7(3): 1690 doi: 10.1039/C5SC04425A
|
[14] |
Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Commun, 2013, 4: 2390 doi: 10.1038/ncomms3390
|
[15] |
Louie M W, Bell A T. An investigation of thin-film Ni‒Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc, 2013, 135(33): 12329 doi: 10.1021/ja405351s
|
[16] |
Liang Y Y, Wang H L, Zhou J G, et al. Covalent hybrid of spinel manganese‒cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc, 2012, 134(7): 3517 doi: 10.1021/ja210924t
|
[17] |
Kim J K, Yang W, Salim J, et al. Li-water battery with oxygen dissolved in water as a cathode. J Electrochem Soc, 2014, 161(3): A285
|
[18] |
Chou N H, Ross P N, Bell A T, et al. Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. Chem Sus Chem, 2011, 4(11): 1566 doi: 10.1002/cssc.201100075
|
[19] |
Lee S W, Carlton C, Risch M, et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J Am Chem Soc, 2012, 134(41): 16959 doi: 10.1021/ja307814j
|
[20] |
Bajdich M, García-Mota M, Vojvodic A, et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc, 2013, 135(36): 13521 doi: 10.1021/ja405997s
|
[21] |
Zhang J T, Zhao Z H, Xia Z H, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nature Nanotechnol, 2015, 10: 444 doi: 10.1038/nnano.2015.48
|
[22] |
Yang H B, Miao J W, Hung S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv, 2016, 2(4): e1501122 doi: 10.1126/sciadv.1501122
|
[23] |
Miner E M, Dincă M. Metal-organic frameworks: Evolved oxygen evolution catalysts. Nature Energy, 2016, 1(12): 16186 doi: 10.1038/nenergy.2016.186
|
[24] |
Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks. Chem Rev, 2012, 112(2): 673 doi: 10.1021/cr300014x
|
[25] |
Zhou H C J, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev, 2014, 43(16): 5415 doi: 10.1039/C4CS90059F
|
[26] |
Dilpazir S, He H Y, Li Z H, et al. Cobalt single atoms immobilized N-doped carbon nanotubes for enhanced bifunctional catalysis toward oxygen reduction and oxygen evolution reactions. ACS Appl Energy Mater, 2018, 1(7): 3283 doi: 10.1021/acsaem.8b00490
|
[27] |
Liu S W, Zhang H M, Zhao Q, et al. Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon, 2016, 106: 74 doi: 10.1016/j.carbon.2016.05.021
|
[28] |
Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano, 2012, 6(8): 7084 doi: 10.1021/nn3021234
|
[29] |
Hou Y, Wen Z H, Cui S M, et al. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv Funct Mater, 2015, 25(6): 872 doi: 10.1002/adfm.201403657
|
[30] |
Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46(14): 1994 doi: 10.1016/j.carbon.2008.08.013
|
[31] |
Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558 doi: 10.1016/j.carbon.2007.02.034
|
[32] |
Zhu Y P, Liu Y P, Ren T Z, et al. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv Funct Mater, 2015, 25(47): 7337 doi: 10.1002/adfm.201503666
|