Citation: | ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 192-200. |
[1] |
CHEN F Q, HUANG X Y, CHENG D G, ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy, 2014, 39(17):9036-9046. doi: 10.1016/j.ijhydene.2014.03.194
|
[2] |
PETITPAS G, ROLLIER J D, DARMON A, GONZALEZ AGUILAR J, METKEMEIJER R, FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy, 2007, 32(14):2848-2867. doi: 10.1016/j.ijhydene.2007.03.026
|
[3] |
LESUEUR H, CZERNICHOWSKI A, CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France, 2639172[P].1998-11-17.
|
[4] |
MUTAF YARDIMCI O, SAVELIEV A V, FRIDMAN A A, KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys, 2000, 87(4):1632-1641. doi: 10.1063/1.372071
|
[5] |
FRIDMAN A, NESTER S, KENNEDY L A, SAVELIEV A, MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust, 1999, 25(2):211-231. doi: 10.1016/S0360-1285(98)00021-5
|
[6] |
ZHANG H, DU C M, WU A J, BO Z, YAN J H, LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy, 2014, 39(24):12620-12635. doi: 10.1016/j.ijhydene.2014.06.047
|
[7] |
LEE H, SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys, 2011, 44(27):8295-8300.
|
[8] |
RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power, reactor thickness, and catalyst existence[J].Chem Eng J, 2009, 155(3):874-880. doi: 10.1016/j.cej.2009.10.009
|
[9] |
RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration, feed flow rate, electrode gap distance, residence time, and catalyst distance[J].Plasma Chem Plasma Process, 2011, 31(4):517-534. doi: 10.1007/s11090-011-9299-y
|
[10] |
INDARTO A, CHOI J W, LEE H, SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy, 2006, 31(14):2986-2995. doi: 10.1016/j.energy.2005.10.034
|
[11] |
LEE D H, KIM K T, KANG H S, SONG Y H, PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels, 2012, 26(7):4284-4290. doi: 10.1021/ef3006367
|
[12] |
YU L, TU X, LI X D, WANG Y, CHI Y, YAN J H.Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater, 2010, 180(1-3):449-455. doi: 10.1016/j.jhazmat.2010.04.051
|
[13] |
YAN J H, PENG Z, LU S Y, DU C M, LI X D, CHEN T, NI M J, CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci, 2007, 19(11):1404-1408. doi: 10.1016/S1001-0742(07)60229-0
|
[14] |
DJEPANG S A, LAMINSI S, NJOYIM-TAMUNGANG E, NGNINTEDEM C, BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng, 2014, 2(1):14-23. http://www.baidu.com/link?url=z3knUhx3ueQ4r1j5UJaeLGOnCwgpIBn5xr5d43ead3nNvfGg4sFCGTWHFWRQwwN4z_U7MYuQ23ru7p-K_7aPNZpFm2rVss3ZXLkWtCcE5SlUYZodq50jmuNmh6_Bzb8PC2cG67_k1WxXHHb4aJxZczmmccORSF0FNAg1ZCdXk9H29hLjUoqDUdt4tYEKnjQ_wppW029YIC2n1LNjz0vNWUi9yOmZTUnMXhXWOiuxme74bDShZl2-TP28-EPXc5Pn-FlHx3F7ct8z056OX5vO8oMKzSsHdxkT7k-r_GxYn0EAyjpxVcAwyYu4byzubOiri6U8QBiAc26ZEufpa0Svo_&wd=&eqid=c1ba34380004e0560000000558bfe0b3
|
[15] |
ITO Y, SHIKI H, TAKIKAWA H, OOTSUKA T, OKAWA T, YAMANAKA S, USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys, 2008, 47(8S2):6956. http://www.baidu.com/link?url=ZOnHrZ5upZFzNAkxFhVZkwshWYJ5rme8f9Z0J-G9pzc-44Xdldi24mtqdd_hq-m7oWYK7HqwuJbcBWUOnvNj2Ilx1ErQvBS3wGMpNGnZYYNzG1uOuTwA6OOKNV1skJt13oRD_MnLxi-vr6PvdrYTmbTv3qeKTRXHVAf6JSIBslSCOjKFncyn-lMZD4z_DKoMARpRKJ2hv44Q0U1DxpwD6QlqFshM8KRMM5EsBckY10UrU7omLu6rH75hrrX6OiE_VFyeVH_JsvSNyp2A5DOthW_0oBvnri8rOSrzwkw4pGFSK9I5vxrzzg_YnlfINveZYE6TZO5LMwd2tTHlVG0_5m6Vx1raAxqGchrGBy-QnNm&wd=&eqid=c68d03ae000488940000000558bfe0a5
|
[16] |
KIM H S, LEE D H, FRIDMAN A, CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer, 2014, 77(0):1075-1083.
|
[17] |
LEE D H, KIM K T, CHA M S, SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst, 2007, 31(2):3343-3351. doi: 10.1016/j.proci.2006.07.230
|
[18] |
ZHANG H, LI X D, ZHANG Y Q, CHEN T, YAN J H, DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci, 2012, 40(12):3493-3498. doi: 10.1109/TPS.2012.2220984
|
[19] |
JIMÉNEZ M, RINCÓN R, MARINAS A, CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy, 2013, 38(21):8708-8719. doi: 10.1016/j.ijhydene.2013.05.004
|
[20] |
屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学, 2007.
TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University, 2007.
|
[21] |
NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html, 2015-10-1.
|
[22] |
YUBERO C, DIMITRIJEVIC M S, GARCÍA M C, CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta, Part B, 2007, 62(2):169-176. doi: 10.1016/j.sab.2007.02.008
|
[23] |
GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill, 1964:580.
|
[24] |
齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学, 2008.
QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University, 2008.
|
[25] |
GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University, 2007.
|
[26] |
HUDDLESTONE R H, LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press, 1965:201-264.
|
[27] |
CRISTOFORETTI G, DE GIACOMO A, DELL'AGLIOC M, LEGNAIOLI S, TOGNONI E, PALLESCHI V, OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta, Part B, 2010, 65(1):86-95. doi: 10.1016/j.sab.2009.11.005
|
[28] |
张浩, 李晓东, 张云卿, 张明, 杜长明, 严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报, 2013, 34(4):787-790. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304048.htm
ZHANG Hao, LI Xiao-dong, ZHANG Yun-qing, ZHANG Ming, DU Chang-ming, YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys, 2013, 34(4):787-790. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304048.htm
|
[29] |
ZHANG J Q, YANG Y J, ZHANG J S, LIU Q, TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels, 2002, 16(3):687-693. doi: 10.1021/ef010217u
|
[30] |
PORNMAI K, JINDANIN A, SEKIGUCHI H, CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process, 2012, 32(4):723-742. doi: 10.1007/s11090-012-9371-2
|
[31] |
GARDU O M, PACHECO M, PACHECO J, VALDIVIA R, SANTANA A, LEFORT B, ESTRADA N, RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy, 2012, 4(2):133-137.
|
[32] |
JASIńSKI M, DORS M, MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources, 2008, 181(1):41-45. doi: 10.1016/j.jpowsour.2007.10.058
|
[33] |
ONOE K, FUJIE A, YAMAGUCHI T, HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel, 1997, 76(3):281-282. doi: 10.1016/S0016-2361(96)00228-1
|
[34] |
HSIEH L T, LEE W J, CHEN C Y, CHANG M B, CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process, 1998, 18(2):215-239. doi: 10.1023/A:1021650516043
|
[35] |
AGHAMIR F M, MATIN N S, JALILI A H, ESFARAYENI M H, KHODAGHOLI M A, AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol, 2004, 13(4):707-711. doi: 10.1088/0963-0252/13/4/021
|
[36] |
KADO S, SEKINE Y, NOZAKI T, OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today, 2004, 89(1):47-55.
|
[37] |
LI X S, ZHU A M, WANG K J, XU Y, SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today, 2004, 98(4):617-624. doi: 10.1016/j.cattod.2004.09.048
|
[38] |
GUTSOL A, RABINOVICH A, FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys, 2011, 44:274001. doi: 10.1088/0022-3727/44/27/274001
|
[39] |
FRIDMAN A, CHIROKOV A, GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys, 2005, 38(2):R1-R24. doi: 10.1088/0022-3727/38/2/R01
|