Issue 2
Feb 2016
Turn off MathJax
Article Contents
WANG Qing, YANG Qian-kun, XU Xiang-cheng, CUI Da, ZHANG Hong-xi, WANG Yi-fan. Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 138-145.
Citation: WANG Qing, YANG Qian-kun, XU Xiang-cheng, CUI Da, ZHANG Hong-xi, WANG Yi-fan. Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 138-145.

Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale

More Information
  • Corresponding author: Tel:0432-64807366,E-mail:rlx888@126.com
  • Received Date: 02 Sep 2015
  • Rev Recd Date: 19 Oct 2015
  • The carbon atom chemical structure of three Wangqing oil shales was characterized by 13C-NMR techniques, and twelve important parameters of the carbon skeleton structure were obtained.Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) tests were used to obtain the formation of light gases during pyrolysis at 50℃/min and the final temperature of 600℃.The FLASHCHAIN model, which was established based on the structure of fuel, was employed to simulate the evolution of pyrolysis products and compared with the experimental tests.The results show that the model has a good simulation below 520℃, some errors occur above 520℃ due to the influence of secondary pyrolysis reactions and decomposition of minerals in the shale.The errors increase gradually with the increasing pyrolysis temperature.

     

  • loading
  • [1]
    刘招君, 柳蓉.中国油页岩特征及开发利用前景分析[J].地学前缘, 2005, 12(3):315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503044.htm

    LIU Zhao-jun, LIU Rong.Oil shale resource state and evaluating system[J].Earth Science Frontiers, 2005, 12(3):315-323. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503044.htm
    [2]
    HOU X L.Prospect of oil shale and shale oil industry.Proceedings international conference on oil shale oil[M].Beijing:Chemical Industry Press, 1988:7-15.
    [3]
    QIAN J L, YIN L.Oil shale-petroleum alternative[M].Beijing:China Petrochemical Press, 2008:30-34.
    [4]
    NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.1.Formulation[J].Energy Fuels, 1991, 5(5):647-665. doi: 10.1021/ef00029a006
    [5]
    NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.2.Impact of operating conditions[J].Energy Fuels, 1991, 5(5):665-673. doi: 10.1021/ef00029a007
    [6]
    NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.3.Modeling the Behavior of Various Coals[J].Energy Fuels, 1991, 5(5):673-683. doi: 10.1021/ef00029a008
    [7]
    NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.4.Predicting ultimate yields from ultimate analyses alone[J].Energy Fuels, 1994, 8(3):659-670. doi: 10.1021/ef00045a022
    [8]
    NIKSA S.FLASHCHAIN Theory for rapid coal devolatilization.5.Interpredicting rates of devolatilization for various coal types and operating conditions[J].Energy Fuels, 1994, 8(3):671-679. doi: 10.1021/ef00045a023
    [9]
    NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.6.Predicting the evolution of fuel nitrogen from various coals[J].Energy Fuels, 1995, 9(3):467-478. doi: 10.1021/ef00051a011
    [10]
    NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.7.Predicting the release of oxygen species from various coals[J].Energy Fuels, 1996, 10(1):173-187. doi: 10.1021/ef950067l
    [11]
    SOLOMON P R, HAMBIEN D G, CARANGRLO R M.General model of coal devolatilization[J].Energy Fuels, 1988, 2(4):405-422. doi: 10.1021/ef00010a006
    [12]
    GRANT D M, PUGMIRE R J, FLETCHER T H.Chemical model of coal devolatilization using percolation lattice statistics[J].Energy Fuels, 1989, 3(2):175-186. doi: 10.1021/ef00014a011
    [13]
    FLETCHER T H, KERSTEIN A R, PUGMIRE R J.Chemical percolation model for devolatilization.2.Temperature and heating rate effects on product yields[J].Energy Fuels, 1990, 4(1):54-60. doi: 10.1021/ef00019a010
    [14]
    THOMAS FLETCHER.Chemical percolation model for devolatilization[J].Energy Fuels, 1992, 6(1):414-431.
    [15]
    JUPUDI R S, ZAMANSKY V, FLETCHER T H.Prediction of light gas composition in coal devolatilization[J].Energy Fuels, 2009, 23(6):3063-3067. doi: 10.1021/ef9001346
    [16]
    NIKSA S.Predicting the rapid devolatilization of diverse forms of biomass with bio-FLASHCHAIN[J].Proc Combust Inst, 2000, 28(2):2727-2733. doi: 10.1016/S0082-0784(00)80693-1
    [17]
    CHEN Y, CHARPENAY S, JENSEN A.Modeling of biomass pyrolysis kinetics[J].Symp (Int) Combust, 1998, 27(1):1327-1334. doi: 10.1016/S0082-0784(98)80537-7
    [18]
    FLETCHER T H, HARLAND R, WEBSTER J.Prediction of tar and light gas during pyrolysis of black liquor and biomass[J].Energy Fuels, 2012, 26(6):3381-3387. doi: 10.1021/ef300574n
    [19]
    DOMINIC B.An advanced model of coal devolatilization based on chemical structure[D].Provo:Brigham Young University, 1999:39-40.
    [20]
    秦匡宗, 劳永新.茂名和抚顺油页岩组成结构的研究I.有机质的芳碳结构[J].燃料化学学报, 1985, 13(2):133-140.

    QIN Kuang-zong, LAO Yong-xin.Investigation on the constitution and structure of Maoming and Fushun oil shale I.The structural components of the organic matter[J].J Fuel Chem Technol, 1985, 13(2):133-140.
    [21]
    TONG J, HAN X, WANG S.Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (Solid-State 13C-NMR, XPS, FT-IR and XRD)[J].Energy Fuels, 2011, 25(9):4006-4013. doi: 10.1021/ef200738p
    [22]
    SOLUM M S, PUGMIRE R J, GRANT D M.13C solid-state NMR argonne premium coals[J].Energy Fuels, 1989, 3(2):187-193. doi: 10.1021/ef00014a012
  • 加载中

Catalog

    Figures(4)  / Tables(5)

    Article Metrics

    Article views(98) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return