Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon
-
摘要: 采用切向气流和磁场协同驱动的旋转滑动弧氩等离子体, 先通过光谱分析法计算了其电子温度和电子密度, 了解其物理特性, 将其应用于甲烷裂解制氢, 研究了进气流量和CH4/Ar比对反应效果的影响。结果表明, 该滑动弧系统电子温度为1.0-2.0 eV, 电子密度高达1015 cm-3, 是介于热与低温等离子体之间的一种等离子体形式, 具有独特的物理特性, 可以在达到较高反应效率的同时, 保持较大的处理量; 在CH4裂解制氢实验中, CH4转化率可达22.1%-70.2%, 并随进气流量和CH4/Ar比的增大均逐渐降低; H2选择性为21.2%-61.2%, 并随进气流量的增大先基本不变后有所增大, 随CH4/Ar比的增大逐渐降低; 与应用于甲烷裂解的不同形式的低温等离子体对比 (如微波、射频、介质阻挡放电等) 可以发现, 旋转滑动弧在获得较高甲烷转化率、较高H2选择性和较低制氢能耗的同时, 还可以保持较大的处理量, 即进气流量可达6-20 L/min。Abstract: A kind of rotating gliding arc (RGA) argon plasma co-driven by tangential flow and magnetic field was investigated and used for hydrogen production from methane decomposition.In order to obtain insights into the physical characteristics of the RGA plasma, optical emission spectroscopy (OES) analysis was used to determine the electron temperature and electron density.In addition, the effects of feed flow rate and CH4/Ar ratio on the performance of the methane decomposition process in this RGA plasma were also investigated.Results have shown that, the RGA plasma is a kind of unique plasma between thermal and non-thermal plasma, with electron temperature of 1.0-2.0 eV and electron density of 1015 cm-3.In this system, the CH4 conversion could be 22.1%-70.2% and it increased with the increase of flow rate or CH4/Ar ratio.The H2 selectivity varied from 21.2% to 61.2%, and with the augment of flow rate, the H2 selectivity first varied slightly and then increased.A comparison of different non-thermal plasmas (e.g., microwave, radio frequency, and dielectric barrier discharge) showed that the RGA plasma could provide a relatively high CH4 conversion and H2 selectivity, as well as a relatively low energy consumption for H2 production, while maintaining a high flow rate (i.e., processing capacity) of 6-20 L/min.
-
表 1 采用的谱线及其光谱学参数
Table 1. Selected spectral lines and parameters
λ/nm A/s-1 Eu/eV gu 357.66 2.75×108 23.01 8 427.22 7.97×105 14.52 3 430.01 3.77×105 14.51 5 433.20 1.92×107 19.31 2 442.60 8.17×107 19.55 6 476.49 6.40×107 19.87 4 518.77 1.38×106 15.30 5 696.54 6.39×106 13.32 3 706.72 3.80×106 13.30 5 727.29 1.83×106 13.33 3 738.40 8.47×106 13.30 5 表 2 滑动弧氩等离子体与典型热和低温等离子体特性对比[25]
Table 2. Typical parameters for the GAD, thermal and non-thermal plasmas[25]
Parameter Thermal
plasmaKGA
plasmaRGA
plasmaNon-thermal
plasmaTe /eV 1-10 1.0-1.5 1.0-2.0 1.0-3.0 Ne /cm-3 1015-1019 1011-1014 1015 109-1011 Tg /K 104-105 300-3000 480 300-600 表 3 不同低温等离子体用于甲烷裂解效果对比
Table 3. Comparison of decomposition of methane assisted by different non-thermal plasmas
Reference Reactor Carrier
gasPower
sourceFlow rate
/(L·min-1)CH4
concentration
/%CH4
conversion
x/%Product selectivity s/% Energy
consumption
/(kJ·L-1)H2 C2H2 [32] microwave N2 3-5kW 93.75-225 22.2-46.7 9.5-13.2 - - 4.3-32.5 [33] microwave - 200W 0.009-0.047 100 85.7-93.8 - 75.4-97.4 - [34] RF Ar 50-120W 0.05 5-20 30.2-89.0 - 13.1-24.3 - [35] DBD - AC 0.01-0.047 100 ≈0.5-3.7 - ≈10 - DBD He 12-23kV 0.1 10-37 ≈0.05-3.6 - - - [36] DBD 4-25 - ≈2 - corona - DC, 15kV 0.006-0.03 100 4-25 - 15 - spark 4-65 - 85 - [37] pulsed - 12W 0.01-0.037 100 29-69 19-51 22-54 43-73.1 spark [8, 9] KGA Ar 4-12W, 0.125-0.2 5-35 ≈15-45 ≈70-78 70-90 - 50Hz - 110-190W, 1.5 100 40-50 ≈32-40 20 - 10-20kHz [10] KGA Ar or 120-170W 1 15-100 ≈50-62 ≈45-70 ≈6-20 - He 20kHz N2 135-163W 1 15-100 ≈45-65 ≈40-65 ≈20-60 - 20kHz [7] KGA Ar 17W, 10kHz 0.6 or 1 4 ≈55-75 - ≈35 - This work RGA Ar DC, 10kV 6-20 4.8-28.6 22.1-70.2 21.2-61.2 10.2-18.0 16.3-30.9 -
[1] CHEN F Q, HUANG X Y, CHENG D G, ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy, 2014, 39(17):9036-9046. doi: 10.1016/j.ijhydene.2014.03.194 [2] PETITPAS G, ROLLIER J D, DARMON A, GONZALEZ AGUILAR J, METKEMEIJER R, FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy, 2007, 32(14):2848-2867. doi: 10.1016/j.ijhydene.2007.03.026 [3] LESUEUR H, CZERNICHOWSKI A, CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France, 2639172[P].1998-11-17. [4] MUTAF YARDIMCI O, SAVELIEV A V, FRIDMAN A A, KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys, 2000, 87(4):1632-1641. doi: 10.1063/1.372071 [5] FRIDMAN A, NESTER S, KENNEDY L A, SAVELIEV A, MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust, 1999, 25(2):211-231. doi: 10.1016/S0360-1285(98)00021-5 [6] ZHANG H, DU C M, WU A J, BO Z, YAN J H, LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy, 2014, 39(24):12620-12635. doi: 10.1016/j.ijhydene.2014.06.047 [7] LEE H, SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys, 2011, 44(27):8295-8300. [8] RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power, reactor thickness, and catalyst existence[J].Chem Eng J, 2009, 155(3):874-880. doi: 10.1016/j.cej.2009.10.009 [9] RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration, feed flow rate, electrode gap distance, residence time, and catalyst distance[J].Plasma Chem Plasma Process, 2011, 31(4):517-534. doi: 10.1007/s11090-011-9299-y [10] INDARTO A, CHOI J W, LEE H, SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy, 2006, 31(14):2986-2995. doi: 10.1016/j.energy.2005.10.034 [11] LEE D H, KIM K T, KANG H S, SONG Y H, PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels, 2012, 26(7):4284-4290. doi: 10.1021/ef3006367 [12] YU L, TU X, LI X D, WANG Y, CHI Y, YAN J H.Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater, 2010, 180(1-3):449-455. doi: 10.1016/j.jhazmat.2010.04.051 [13] YAN J H, PENG Z, LU S Y, DU C M, LI X D, CHEN T, NI M J, CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci, 2007, 19(11):1404-1408. doi: 10.1016/S1001-0742(07)60229-0 [14] DJEPANG S A, LAMINSI S, NJOYIM-TAMUNGANG E, NGNINTEDEM C, BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng, 2014, 2(1):14-23. http://www.baidu.com/link?url=z3knUhx3ueQ4r1j5UJaeLGOnCwgpIBn5xr5d43ead3nNvfGg4sFCGTWHFWRQwwN4z_U7MYuQ23ru7p-K_7aPNZpFm2rVss3ZXLkWtCcE5SlUYZodq50jmuNmh6_Bzb8PC2cG67_k1WxXHHb4aJxZczmmccORSF0FNAg1ZCdXk9H29hLjUoqDUdt4tYEKnjQ_wppW029YIC2n1LNjz0vNWUi9yOmZTUnMXhXWOiuxme74bDShZl2-TP28-EPXc5Pn-FlHx3F7ct8z056OX5vO8oMKzSsHdxkT7k-r_GxYn0EAyjpxVcAwyYu4byzubOiri6U8QBiAc26ZEufpa0Svo_&wd=&eqid=c1ba34380004e0560000000558bfe0b3 [15] ITO Y, SHIKI H, TAKIKAWA H, OOTSUKA T, OKAWA T, YAMANAKA S, USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys, 2008, 47(8S2):6956. http://www.baidu.com/link?url=ZOnHrZ5upZFzNAkxFhVZkwshWYJ5rme8f9Z0J-G9pzc-44Xdldi24mtqdd_hq-m7oWYK7HqwuJbcBWUOnvNj2Ilx1ErQvBS3wGMpNGnZYYNzG1uOuTwA6OOKNV1skJt13oRD_MnLxi-vr6PvdrYTmbTv3qeKTRXHVAf6JSIBslSCOjKFncyn-lMZD4z_DKoMARpRKJ2hv44Q0U1DxpwD6QlqFshM8KRMM5EsBckY10UrU7omLu6rH75hrrX6OiE_VFyeVH_JsvSNyp2A5DOthW_0oBvnri8rOSrzwkw4pGFSK9I5vxrzzg_YnlfINveZYE6TZO5LMwd2tTHlVG0_5m6Vx1raAxqGchrGBy-QnNm&wd=&eqid=c68d03ae000488940000000558bfe0a5 [16] KIM H S, LEE D H, FRIDMAN A, CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer, 2014, 77(0):1075-1083. [17] LEE D H, KIM K T, CHA M S, SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst, 2007, 31(2):3343-3351. doi: 10.1016/j.proci.2006.07.230 [18] ZHANG H, LI X D, ZHANG Y Q, CHEN T, YAN J H, DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci, 2012, 40(12):3493-3498. doi: 10.1109/TPS.2012.2220984 [19] JIMÉNEZ M, RINCÓN R, MARINAS A, CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy, 2013, 38(21):8708-8719. doi: 10.1016/j.ijhydene.2013.05.004 [20] 屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学, 2007.TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University, 2007. [21] NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html, 2015-10-1. [22] YUBERO C, DIMITRIJEVIC M S, GARCÍA M C, CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta, Part B, 2007, 62(2):169-176. doi: 10.1016/j.sab.2007.02.008 [23] GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill, 1964:580. [24] 齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学, 2008.QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University, 2008. [25] GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University, 2007. [26] HUDDLESTONE R H, LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press, 1965:201-264. [27] CRISTOFORETTI G, DE GIACOMO A, DELL'AGLIOC M, LEGNAIOLI S, TOGNONI E, PALLESCHI V, OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta, Part B, 2010, 65(1):86-95. doi: 10.1016/j.sab.2009.11.005 [28] 张浩, 李晓东, 张云卿, 张明, 杜长明, 严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报, 2013, 34(4):787-790. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304048.htmZHANG Hao, LI Xiao-dong, ZHANG Yun-qing, ZHANG Ming, DU Chang-ming, YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys, 2013, 34(4):787-790. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304048.htm [29] ZHANG J Q, YANG Y J, ZHANG J S, LIU Q, TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels, 2002, 16(3):687-693. doi: 10.1021/ef010217u [30] PORNMAI K, JINDANIN A, SEKIGUCHI H, CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process, 2012, 32(4):723-742. doi: 10.1007/s11090-012-9371-2 [31] GARDU O M, PACHECO M, PACHECO J, VALDIVIA R, SANTANA A, LEFORT B, ESTRADA N, RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy, 2012, 4(2):133-137. [32] JASIńSKI M, DORS M, MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources, 2008, 181(1):41-45. doi: 10.1016/j.jpowsour.2007.10.058 [33] ONOE K, FUJIE A, YAMAGUCHI T, HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel, 1997, 76(3):281-282. doi: 10.1016/S0016-2361(96)00228-1 [34] HSIEH L T, LEE W J, CHEN C Y, CHANG M B, CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process, 1998, 18(2):215-239. doi: 10.1023/A:1021650516043 [35] AGHAMIR F M, MATIN N S, JALILI A H, ESFARAYENI M H, KHODAGHOLI M A, AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol, 2004, 13(4):707-711. doi: 10.1088/0963-0252/13/4/021 [36] KADO S, SEKINE Y, NOZAKI T, OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today, 2004, 89(1):47-55. [37] LI X S, ZHU A M, WANG K J, XU Y, SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today, 2004, 98(4):617-624. doi: 10.1016/j.cattod.2004.09.048 [38] GUTSOL A, RABINOVICH A, FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys, 2011, 44:274001. doi: 10.1088/0022-3727/44/27/274001 [39] FRIDMAN A, CHIROKOV A, GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys, 2005, 38(2):R1-R24. doi: 10.1088/0022-3727/38/2/R01