留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转滑动弧氩等离子体裂解甲烷制氢

张浩 朱凤森 李晓东 吴昂键 薄拯 岑可法

张浩, 朱凤森, 李晓东, 吴昂键, 薄拯, 岑可法. 旋转滑动弧氩等离子体裂解甲烷制氢[J]. 机械工程学报, 2016, 44(2): 192-200.
引用本文: 张浩, 朱凤森, 李晓东, 吴昂键, 薄拯, 岑可法. 旋转滑动弧氩等离子体裂解甲烷制氢[J]. 机械工程学报, 2016, 44(2): 192-200.
ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 192-200.
Citation: ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 192-200.

旋转滑动弧氩等离子体裂解甲烷制氢

基金项目: 

国家自然科学基金 51576174

高等学校博士学科点专项科研基金 20120101110099

中央高校基本科研业务费专项资金 2015FZA4011

详细信息
  • 中图分类号: TK91

Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon

More Information
    Corresponding author: Tel: 0571-87952037, Fax: 0571-87952438, E-mail: lixd@zju.edu.cn
  • 摘要: 采用切向气流和磁场协同驱动的旋转滑动弧氩等离子体, 先通过光谱分析法计算了其电子温度和电子密度, 了解其物理特性, 将其应用于甲烷裂解制氢, 研究了进气流量和CH4/Ar比对反应效果的影响。结果表明, 该滑动弧系统电子温度为1.0-2.0 eV, 电子密度高达1015 cm-3, 是介于热与低温等离子体之间的一种等离子体形式, 具有独特的物理特性, 可以在达到较高反应效率的同时, 保持较大的处理量; 在CH4裂解制氢实验中, CH4转化率可达22.1%-70.2%, 并随进气流量和CH4/Ar比的增大均逐渐降低; H2选择性为21.2%-61.2%, 并随进气流量的增大先基本不变后有所增大, 随CH4/Ar比的增大逐渐降低; 与应用于甲烷裂解的不同形式的低温等离子体对比 (如微波、射频、介质阻挡放电等) 可以发现, 旋转滑动弧在获得较高甲烷转化率、较高H2选择性和较低制氢能耗的同时, 还可以保持较大的处理量, 即进气流量可达6-20 L/min。

     

  • 图  实验装置系统流程示意图

    Figure  1.  Schematic of experimental setup

    图  旋转滑动弧反应器结构示意图

    Figure  2.  Schematic of the RGA reactor

    图  Ar 696.54nm谱线典型的玻尔兹曼曲线 (Q=2和4L/min)

    Figure  3.  Typical boltzmann plot of Ar 696.54nm (Q=2 and 4L/min)

    图  Ar 696.54nm谱线典型的Voigt拟合结果 (Q=2L/min)

    Figure  4.  Typical voigt fit of spectral line in Ar 696.54nm (Q=2L/min)

    图  电子温度和电子密度随进气流量的变化

    Figure  5.  Electron temperature and density as a function of feed flow rate

    图  CH4转化率和输入能量密度随进气流量的变化

    Figure  6.  CH4 conversion and input energy density as a function of feed flow rate

    图  产物选择性和制氢电耗随进气流量的变化

    Figure  7.  Products' selectivities and specific energy consumption as a function of feed flow rate

    图  输入能量密度、CH4转化率、产物选择性和制氢电耗随CH4/Ar比的变化

    Figure  8.  Input energy density, CH4 conversion and products' selectivities as a function of CH4/Ar ratio

    表  1  采用的谱线及其光谱学参数

    Table  1.   Selected spectral lines and parameters

    λ/nmA/s-1Eu/eVgu
    357.662.75×10823.018
    427.227.97×10514.523
    430.013.77×10514.515
    433.201.92×10719.312
    442.608.17×10719.556
    476.496.40×10719.874
    518.771.38×10615.305
    696.546.39×10613.323
    706.723.80×10613.305
    727.291.83×10613.333
    738.408.47×10613.305
    下载: 导出CSV

    表  2  滑动弧氩等离子体与典型热和低温等离子体特性对比[25]

    Table  2.   Typical parameters for the GAD, thermal and non-thermal plasmas[25]

    ParameterThermal
    plasma
    KGA
    plasma
    RGA
    plasma
    Non-thermal
    plasma
    Te /eV1-101.0-1.51.0-2.01.0-3.0
    Ne /cm-31015-10191011-10141015109-1011
    Tg /K104-105300-3000480300-600
    下载: 导出CSV

    表  3  不同低温等离子体用于甲烷裂解效果对比

    Table  3.   Comparison of decomposition of methane assisted by different non-thermal plasmas

    ReferenceReactorCarrier
    gas
    Power
    source
    Flow rate
    /(L·min-1)
    CH4
    concentration
    /%
    CH4
    conversion
    x/%
    Product selectivity s/%Energy
    consumption
    /(kJ·L-1)
    H2C2H2
    [32]microwaveN23-5kW93.75-22522.2-46.79.5-13.2--4.3-32.5
    [33]microwave-200W0.009-0.04710085.7-93.8-75.4-97.4-
    [34]RFAr50-120W0.055-2030.2-89.0-13.1-24.3-
    [35]DBD-AC0.01-0.047100≈0.5-3.7-≈10-
    DBDHe12-23kV0.110-37≈0.05-3.6---
    [36]DBD4-25-≈2-
    corona-DC, 15kV0.006-0.031004-25-15-
    spark4-65-85-
    [37]pulsed-12W0.01-0.03710029-6919-5122-5443-73.1
    spark
    [8, 9]KGAAr4-12W,0.125-0.25-35≈15-45≈70-7870-90-
    50Hz
    -110-190W,1.510040-50≈32-4020-
    10-20kHz
    [10]KGAAr or120-170W115-100≈50-62≈45-70≈6-20-
    He20kHz
    N2135-163W115-100≈45-65≈40-65≈20-60-
    20kHz
    [7]KGAAr17W, 10kHz0.6 or 14≈55-75-≈35-
    This workRGAArDC, 10kV6-204.8-28.622.1-70.221.2-61.210.2-18.016.3-30.9
    下载: 导出CSV
  • [1] CHEN F Q, HUANG X Y, CHENG D G, ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy, 2014, 39(17):9036-9046. doi: 10.1016/j.ijhydene.2014.03.194
    [2] PETITPAS G, ROLLIER J D, DARMON A, GONZALEZ AGUILAR J, METKEMEIJER R, FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy, 2007, 32(14):2848-2867. doi: 10.1016/j.ijhydene.2007.03.026
    [3] LESUEUR H, CZERNICHOWSKI A, CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France, 2639172[P].1998-11-17.
    [4] MUTAF YARDIMCI O, SAVELIEV A V, FRIDMAN A A, KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys, 2000, 87(4):1632-1641. doi: 10.1063/1.372071
    [5] FRIDMAN A, NESTER S, KENNEDY L A, SAVELIEV A, MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust, 1999, 25(2):211-231. doi: 10.1016/S0360-1285(98)00021-5
    [6] ZHANG H, DU C M, WU A J, BO Z, YAN J H, LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy, 2014, 39(24):12620-12635. doi: 10.1016/j.ijhydene.2014.06.047
    [7] LEE H, SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys, 2011, 44(27):8295-8300.
    [8] RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power, reactor thickness, and catalyst existence[J].Chem Eng J, 2009, 155(3):874-880. doi: 10.1016/j.cej.2009.10.009
    [9] RUEANGJITT N, SREETHAWONG T, CHAVADEJ S, SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration, feed flow rate, electrode gap distance, residence time, and catalyst distance[J].Plasma Chem Plasma Process, 2011, 31(4):517-534. doi: 10.1007/s11090-011-9299-y
    [10] INDARTO A, CHOI J W, LEE H, SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy, 2006, 31(14):2986-2995. doi: 10.1016/j.energy.2005.10.034
    [11] LEE D H, KIM K T, KANG H S, SONG Y H, PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels, 2012, 26(7):4284-4290. doi: 10.1021/ef3006367
    [12] YU L, TU X, LI X D, WANG Y, CHI Y, YAN J H.Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater, 2010, 180(1-3):449-455. doi: 10.1016/j.jhazmat.2010.04.051
    [13] YAN J H, PENG Z, LU S Y, DU C M, LI X D, CHEN T, NI M J, CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci, 2007, 19(11):1404-1408. doi: 10.1016/S1001-0742(07)60229-0
    [14] DJEPANG S A, LAMINSI S, NJOYIM-TAMUNGANG E, NGNINTEDEM C, BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng, 2014, 2(1):14-23. http://www.baidu.com/link?url=z3knUhx3ueQ4r1j5UJaeLGOnCwgpIBn5xr5d43ead3nNvfGg4sFCGTWHFWRQwwN4z_U7MYuQ23ru7p-K_7aPNZpFm2rVss3ZXLkWtCcE5SlUYZodq50jmuNmh6_Bzb8PC2cG67_k1WxXHHb4aJxZczmmccORSF0FNAg1ZCdXk9H29hLjUoqDUdt4tYEKnjQ_wppW029YIC2n1LNjz0vNWUi9yOmZTUnMXhXWOiuxme74bDShZl2-TP28-EPXc5Pn-FlHx3F7ct8z056OX5vO8oMKzSsHdxkT7k-r_GxYn0EAyjpxVcAwyYu4byzubOiri6U8QBiAc26ZEufpa0Svo_&wd=&eqid=c1ba34380004e0560000000558bfe0b3
    [15] ITO Y, SHIKI H, TAKIKAWA H, OOTSUKA T, OKAWA T, YAMANAKA S, USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys, 2008, 47(8S2):6956. http://www.baidu.com/link?url=ZOnHrZ5upZFzNAkxFhVZkwshWYJ5rme8f9Z0J-G9pzc-44Xdldi24mtqdd_hq-m7oWYK7HqwuJbcBWUOnvNj2Ilx1ErQvBS3wGMpNGnZYYNzG1uOuTwA6OOKNV1skJt13oRD_MnLxi-vr6PvdrYTmbTv3qeKTRXHVAf6JSIBslSCOjKFncyn-lMZD4z_DKoMARpRKJ2hv44Q0U1DxpwD6QlqFshM8KRMM5EsBckY10UrU7omLu6rH75hrrX6OiE_VFyeVH_JsvSNyp2A5DOthW_0oBvnri8rOSrzwkw4pGFSK9I5vxrzzg_YnlfINveZYE6TZO5LMwd2tTHlVG0_5m6Vx1raAxqGchrGBy-QnNm&wd=&eqid=c68d03ae000488940000000558bfe0a5
    [16] KIM H S, LEE D H, FRIDMAN A, CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer, 2014, 77(0):1075-1083.
    [17] LEE D H, KIM K T, CHA M S, SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst, 2007, 31(2):3343-3351. doi: 10.1016/j.proci.2006.07.230
    [18] ZHANG H, LI X D, ZHANG Y Q, CHEN T, YAN J H, DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci, 2012, 40(12):3493-3498. doi: 10.1109/TPS.2012.2220984
    [19] JIMÉNEZ M, RINCÓN R, MARINAS A, CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy, 2013, 38(21):8708-8719. doi: 10.1016/j.ijhydene.2013.05.004
    [20] 屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学, 2007.

    TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University, 2007.
    [21] NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html, 2015-10-1.
    [22] YUBERO C, DIMITRIJEVIC M S, GARCÍA M C, CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta, Part B, 2007, 62(2):169-176. doi: 10.1016/j.sab.2007.02.008
    [23] GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill, 1964:580.
    [24] 齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学, 2008.

    QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University, 2008.
    [25] GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University, 2007.
    [26] HUDDLESTONE R H, LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press, 1965:201-264.
    [27] CRISTOFORETTI G, DE GIACOMO A, DELL'AGLIOC M, LEGNAIOLI S, TOGNONI E, PALLESCHI V, OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta, Part B, 2010, 65(1):86-95. doi: 10.1016/j.sab.2009.11.005
    [28] 张浩, 李晓东, 张云卿, 张明, 杜长明, 严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报, 2013, 34(4):787-790. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304048.htm

    ZHANG Hao, LI Xiao-dong, ZHANG Yun-qing, ZHANG Ming, DU Chang-ming, YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys, 2013, 34(4):787-790. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304048.htm
    [29] ZHANG J Q, YANG Y J, ZHANG J S, LIU Q, TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels, 2002, 16(3):687-693. doi: 10.1021/ef010217u
    [30] PORNMAI K, JINDANIN A, SEKIGUCHI H, CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process, 2012, 32(4):723-742. doi: 10.1007/s11090-012-9371-2
    [31] GARDU O M, PACHECO M, PACHECO J, VALDIVIA R, SANTANA A, LEFORT B, ESTRADA N, RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy, 2012, 4(2):133-137.
    [32] JASIńSKI M, DORS M, MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources, 2008, 181(1):41-45. doi: 10.1016/j.jpowsour.2007.10.058
    [33] ONOE K, FUJIE A, YAMAGUCHI T, HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel, 1997, 76(3):281-282. doi: 10.1016/S0016-2361(96)00228-1
    [34] HSIEH L T, LEE W J, CHEN C Y, CHANG M B, CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process, 1998, 18(2):215-239. doi: 10.1023/A:1021650516043
    [35] AGHAMIR F M, MATIN N S, JALILI A H, ESFARAYENI M H, KHODAGHOLI M A, AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol, 2004, 13(4):707-711. doi: 10.1088/0963-0252/13/4/021
    [36] KADO S, SEKINE Y, NOZAKI T, OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today, 2004, 89(1):47-55.
    [37] LI X S, ZHU A M, WANG K J, XU Y, SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today, 2004, 98(4):617-624. doi: 10.1016/j.cattod.2004.09.048
    [38] GUTSOL A, RABINOVICH A, FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys, 2011, 44:274001. doi: 10.1088/0022-3727/44/27/274001
    [39] FRIDMAN A, CHIROKOV A, GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys, 2005, 38(2):R1-R24. doi: 10.1088/0022-3727/38/2/R01
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  97
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 修回日期:  2015-09-14

目录

    /

    返回文章
    返回