Influence of coal tar distillates on coke formation during co-processing of Liaohe heavy crude oil with the distillates
-
摘要: 从煤焦油馏分油自身及与辽河稠油共炼生焦规律出发,利用元素分析、核磁共振氢谱、同步荧光光谱及族组成分析等方法对馏分油进行表征,研究了煤焦油馏分油对辽河稠油热生焦性能的影响。结果表明,辽河稠油掺炼煤焦油馏分油可以改善辽河稠油的热生焦性能。实验条件下,掺炼体系加权生焦率为3.3%-6.4%,实验生焦率为0.5%-5.9%,表现出良好的协同效果。不同馏分油的协同作用程度取决于馏分油的化学组成和含量。饱和烃、单环芳烃和缩合四环芳烃会促进生焦,而双环芳烃、三环芳烃和缩合双环芳烃有减缓生焦的作用。Abstract: The influence of coal tar distillates on coke formation during the processing of Liaohe heavy crude oil with the distillates was studied.The composition of feedstock was characterized by the elemental analysis,the proton nuclear magnetic resonance spectrometry,the synchronous fluorescence spectrometry and the group analysis techniques.It has been found that the coke formation of Liaohe heavy crude oil upon heating can be reduced by co-processing with the coal tar distillates.Under the experimental conditions,the coke yields from the co-processing(0.5%-5.9%) are lower than that from the weighted calculation(3.3%-6.4%);a positive synergetic effect was observed.The extent of the synergetic effect depends on the chemical composition and content of the distillates.Saturates,1-ring aromatics and condensed 4-ring aromatics may retard the coke formation,whereas 2-ring and 3-ring aromatics as well as condensed 2-ring aromatics may retard the coke formation.
-
Key words:
- Liaohe heavy crude oil /
- coal tar distillates /
- coke formation /
- chemical composition
-
表 1 辽河稠油的性质
Table 1. Properties of Liaohe heavy crude oil
Property Elemental analysis w/% H/C Group analysis w/% ρ20a /(kg·m-3) μ100b /(mm2·s-1) wMCRc /% C H N S Od saturates aromatics resins asphaltenes 1000 680 12.6 86.6 10.8 0.9 0.4 1.2 1.5 28.9 27.4 31.3 12.4 a: density at 20℃; b: kinematic viscosity at 100℃; c: carbon residue by micro- method; d: by difference 表 2 不同煤焦油馏分油的元素分析
Table 2. Elemental analysis of coal tar distillates
Coal tar distillate Elemental analysis w/% H/C (atomic ratio) J series C H N S Od a 84.3 9.4 0.5 0.2 5.7 1.3 b 84.7 9.2 0.5 0.2 5.3 1.3 c 84.9 8.9 0.5 0.2 5.5 1.3 d 85.8 8.8 0.5 0.2 4.7 1.2 e 86.0 8.9 0.6 0.1 4.4 1.2 f 86.6 8.8 0.6 0.1 3.9 1.2 C series a 83.9 9.6 0.4 0.2 5.9 1.4 b 85.9 9.6 0.4 0.2 4.1 1.3 c 86.2 9.4 0.5 0.1 3.8 1.3 d 86.7 9.1 0.5 0.1 3.7 1.3 e 87.3 9.0 0.7 0.1 3.0 1.2 f 88.1 9.0 0.7 0.1 2.2 1.2 N series a 85.4 9.6 0.5 - 4.5 1.4 b 86.1 9.4 0.6 - 3.9 1.3 c 86.2 9.1 0.5 - 4.3 1.3 d 87.1 8.8 0.5 - 3.6 1.2 e 86.6 8.7 0.6 - 4.1 1.2 f 87.5 8.1 0.7 - 3.7 1.1 d: by difference; -: no detectable 表 3 组合馏分油的馏分组成分布
Table 3. Distillate composition distribution of blend distillates
Blend distillate Compostion w/% a b c d e f Bt 16.2 10.5 14.8 15.7 23.3 19.5 B1 8.1 5.3 7.4 7.9 61.6 9.8 B2 12.1 7.9 11.1 11.8 42.5 14.6 B3 12.1 7.9 11.1 11.8 17.5 39.6 B4 8.1 5.3 7.4 7.9 11.7 59.4 -
[1] 瞿国华.重质原油加工的热点与难点(I)[J].石油化工技术与经济,2013,29(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHA201301000.htmQU Guo-hua.Hot points and hard points in processing of heavy oil(I)[J].Technol Econ Petrochem,2013,29(1):1-7). http://www.cnki.com.cn/Article/CJFDTOTAL-SYHA201301000.htm [2] HAO H G,WU B S,YANG J L,GUO Q,YANG Y,LI Y W.Non-thermal plasma enhanced heavy oil upgrading[J].Fuel,2014,149:162-173. http://www.baidu.com/link?url=vwjxb_p9qJLOfFNdCa_lOZc6DVaLsUzdtuF_LUotjH70RvcrYpJ41bZb6a6WmSVnkVlP-6EvD5_bwTatqDSejWZ1hIT14UXptK9ByKPMqA_MPKxAxA7hDZ4qxD_o9MHEZOp89gfcBDgYQTFp3lYmqh2kwuqSCW06XXSixR7X8MlyX9lArj9_G9J0YI-CyFZUN3uTDrXhNsfnIQ7qFm-EpPlnp3KFbzmjADUgeAPvAEfjSgZgdFPohnzhbkA5RoQ5XWc5B6llLbmADY4amfDlR3bS2yz_yWfEkW1dTlzeoPbQ6XlUIIONbMxjjlZ5l2pF&wd=&eqid=becf90f70003e52e0000000558bfdfaf [3] ANCHEYTA J,CENTENO G,TREJO F,SPEIGHT J G.Asphaltene characterization as function of time on-stream during hydroprocessing of Maya crude[J].Catal Today,2005,109:162-166. doi: 10.1016/j.cattod.2005.08.004 [4] 赵辉.渣油加氢转化规律研究[D].华东:中国石油大学,2009.ZHAO Hui.Studies on the hydro-processing of residue[D].East China:China University of Petroleum,2009. [5] 张晓静.煤炭直接液化溶剂的研究[J].洁净煤技术,2011,17(4):26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201104011.htmZHANG Xiao-jing.Study on solvents for direct coal liquefaction[J].Clean Coal Technol,2011,17(4):26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201104011.htm [6] 郝海刚.冷等离子体-热裂解耦合重油提质工艺及反应机理研究[D].太原:中国科学院山西煤炭化学研究所,2014.HAO Hai-gang.Study on non-thermal plasma/thermal cracking coupling process for upgrading heavy oil and corresponding mechanism[D].Taiyuan:Institute of Coal Chemistry,Chinese Academy of Sciences,2014. [7] 梁文杰.重质油化学[M].山东东营:石油大学出版社,2003,204.LIANG Wen-jie.Chemistry of heavy oil[M].Dongying Shandong:University of Petroleum Press,2003,204) [8] GAWEL I,BOCIARSKA D,BISKUOSKI P.Effect of asphaltenes on hydroprocessing of heavy oil and residua[J].Appl Catal,2005,295(1):89-94. doi: 10.1016/j.apcata.2005.08.001 [9] 李庶峰,邓文安,文萍,阙国和.煤焦油与轮古稠油悬浮床加氢共炼工艺的研究[J].辽宁石油化工大学学报,2007,27(4):9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-FSSX200704003.htmLI Shu-feng,DENG Wen-an,WEN Ping,QUE Guo-he.The slurry-bed hydrocracking react ion of the coal-tar and Lungu heavy oil[J].J Liaoning Univ Pet Chem Technol,2007,27(4):9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-FSSX200704003.htm [10] 水恒福,张德祥,张超群.煤焦油分离与精制[M].北京:化学工业出版社,2008,1-4.SHUI Heng-fu,ZHANG De-xiang,ZHANG Chao-qun.Separation and refining coal tar[M].Beijing:Chemical Industry Press,2008,1-4. [11] 闫灿灿.渣油掺炼乙烯焦油热处理生焦反应的研究[D].北京:中国石油大学,2009.YAN Can-can.Study on thermal coke formation of residue blended with ethylene tar[D].Beijing:China University of Petroleum,2009. [12] BROWN J K,LADNER W R.A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy II A comparison with infra-red measurement and the conversion to carbon structure[J].Fuel,1960,39:87-96. [13] SH/T 0509-92,石油沥青组分测定法[S].SH/T 0509-92,Test method for separation of asphalt into four fractions[S]. [14] SH/T 0659-1998,瓦斯油中饱和烃馏分的烃类测定法(质谱法)[S].SH/T 0659-1998,Standard test method for hydrocarbon types analysis of gas-oil saturates fractions by high ionizing voltage mass spectrometry[S]. [15] GUO A J,ZHANG X J,WANG Z X.Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry[J].Fuel Process Technol,2008,89:643-650. doi: 10.1016/j.fuproc.2007.12.006 [16] LI S,LIU C,QUE G,LIANG W.Colloidal structures of vacuum residua and their thermal.Stability in terms of saturate,aromatic,resin and asphaltene composition[J].J Pet Sci Eng,1999,22:37-45. doi: 10.1016/S0920-4105(98)00055-2 [17] 李勇志,邓先梁,俞惟乐.同步荧光光谱法监测按芳环数分离重质油中的芳烃[J].燃料化学学报,1998,3(26):280-284. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX803.017.htmLI Yong-zhi,DENG Xian-liang,YU Wei-le.Application of synchronous fluorescence spectrometry in separation of aromatics by ring number in heavy oil petroleum fractions[J].J Fuel Chem Technol,1998,3(26):280-284. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX803.017.htm