留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuFe@SiO2催化剂的制备及其在CO加氢合成低碳醇中的应用

侯宾 韩信有 林明桂 房克功

侯宾, 韩信有, 林明桂, 房克功. CuFe@SiO2催化剂的制备及其在CO加氢合成低碳醇中的应用[J]. 机械工程学报, 2016, 44(2): 217-224.
引用本文: 侯宾, 韩信有, 林明桂, 房克功. CuFe@SiO2催化剂的制备及其在CO加氢合成低碳醇中的应用[J]. 机械工程学报, 2016, 44(2): 217-224.
HOU Bin, HAN Xin-you, LIN Ming-gui, FANG Ke-gong. Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 217-224.
Citation: HOU Bin, HAN Xin-you, LIN Ming-gui, FANG Ke-gong. Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 217-224.

CuFe@SiO2催化剂的制备及其在CO加氢合成低碳醇中的应用

基金项目: 

国家自然科学基金 21473230

国家高技术研究发展计划 863计划, 2012AA051002

中国科学院战略先导项目 XDA01020304

详细信息
  • 中图分类号: O643

Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation

More Information
  • 摘要: 采用共还原-原位包覆法制备一系列SiO2包覆铜铁双金属纳米颗粒的催化剂 (CuFe@SiO2), 借助N2物理吸附、XRD、TEM、SEM-EDS、XPS和H2-TPR等手段对不同Cu/Fe物质的量比的CuFe@SiO2催化剂的物理化学性质进行了表征, 并考察了催化剂在CO加氢合成低碳醇中的催化反应性能。结果表明, 所制得的催化剂均为孔分布处于介孔范围的SiO2包覆的铜铁纳米颗粒。随着Cu/Fe物质的量比降低, 铜铁以复合氧化物存在的比例、总醇及C2+OH选择性先增大后减小。其中, 总醇及C2+OH选择性在Cu/Fe物质的量比为1时达到最大, 这是由于此时催化剂存在较多的CuFe2O4复合氧化物, 铜铁协同作用较强, 同时催化剂也呈现较大的比表面积及孔容, 有利于所生成的醇更快扩散至催化剂表面而避免二次加氢生产烃类。

     

  • 图  不同Cu/Fe物质的量比包覆结构催化剂孔径分布图 (a) 及N2吸附-脱附曲线 (b)

    Figure  1.  Pore size distribution (a) and N2 sorption curves (b) of SiO2@CuxFey samples

    图  不同Cu/Fe物质的量比包覆结构催化剂的XRD谱图

    Figure  2.  XRD patterns of SiO2@CuxFey

    a: Cu4Fe@SiO2; b: Cu2Fe@SiO2; c: CuFe@SiO2; d: CuFe2@SiO2

    图  不同Cu/Fe物质的量比包覆结构催化剂的TEM照片

    Figure  3.  TEM images of the coated structure catalysts with different Cu/Fe mol ratios

    (a): Cu4Fe@SiO2; (b): Cu2Fe@SiO2; (c): CuFe@SiO2; (d): CuFe2@SiO2

    图  不同Cu/Fe物质的量比包覆结构催化剂反应前 (a-d) 及反应后 (e-h) SEM照片及相应的元素面扫描图

    Figure  4.  SEM images and elemental mapping pictures of the fresh and spent Cu4Fe@SiO2 (a, e), Cu2Fe@SiO2 (b, f), CuFe@SiO2 (c, g) and CuFe2@SiO2 (d, h)

    图  不同Cu/Fe物质的量比包覆结构催化剂Cu 2p3/2(a)、Fe 2p(b) 的XPS谱图

    Figure  5.  Cu 2p3/2(a), Fe 2p(b) X-ray photoelectron spectra of SiO2@CuxFey

    图  不同Cu/Fe物质的量比包覆结构催化剂的H2-TPR谱图

    Figure  6.  H2-TPR profiles of SiO2@CuxFey

    图  不同Cu/Fe物质的量比包覆结构催化剂的CO加氢催化性能

    Figure  7.  Catalytic results of SiO2@CuxFey with different Cu/Fe ratios

    表  1  不同Cu/Fe物质的量比包覆结构催化剂的物理性质

    Table  1.   extural properties of SiO2@CuxFey catalysts with different Cu/Fe molar ratios

    CatalystBET surface
    area A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Pore
    diameter d/nm
    Capacity wmol/%Cu/Fe
    (mol ratio)
    CuFe
    Cu4Fe@SiO2257.570.416.460.980.462.12
    Cu2Fe@SiO2221.680.234.760.460.271.68
    CuFe@SiO2284.050.374.970.350.460.76
    CuFe2@SiO2251.950.314.510.210.620.33
    下载: 导出CSV

    表  2  不同Cu/Fe物质的量比包覆结构催化剂的Cu 2p3/2 XPS谱图参数

    Table  2.   XPS parameters of Cu 2p2/3 of SiO2@CuxFey

    CatalystBinding energy E/eVPeak intensity ratio
    CuA2+CuB2+CuA2+satelliteCuB2+satelliteI(CuA2+)I(CuB2+)
    Cu4Fe@SiO2933.58935.41941.99943.850.3430.657
    Cu2Fe@SiO2933.52935.19941.62943.740.2470.753
    CuFe@SiO2933.34935.20941.37943.830.2800.720
    CuFe2@SiO2932.98934.60941.38943.490.3260.674
    下载: 导出CSV

    表  3  不同Cu/Fe物质的量比包覆结构催化剂的Fe 2p XPS谱图参数

    Table  3.   XPS parameters of Fe 2p of SiO2@CuxFey

    CatalystBinding energy E/eVPeak intensity ratio
    FeA3+FeB3+FeB3+satelliteI(FeA3+)I(FeB3+)
    Cu4Fe@SiO2710.78712.73718.30.4210.579
    Cu2Fe@SiO2711.16712.72719.520.3960.604
    CuFe@SiO2710.87712.52719.220.3990.601
    CuFe2@SiO2710.58712.30718.590.4210.579
    下载: 导出CSV
  • [1] MEDFORD A J, LAUSCHE A C, ABILD-PEDERSEN F, TEMEL B, SCHJODT N C, NORSKOV J K, STUDT F.Activity and selectivity trends in synthesis gas conversion to higher alcohols[J].Top Catal, 2014, 57(1/4):135-142.
    [2] 肖康, 鲍正洪, 齐行振, 王新星, 钟良枢, 房克功, 林明桂, 孙予罕.合成气制混合醇双功能催化研究进展[J].催化学报, 2013, 34(1):116-129. doi: 10.1016/S1872-2067(11)60496-8

    XIAO Kang, BAO Zheng-hong, QI Xing-zhen, WANG Xin-xing, ZHONG Liang-shu, FANG Ke-gong, LIN Ming-gui, SUN Yu-han.Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J].Chin J Catal, 2013, 34(1):116-129. doi: 10.1016/S1872-2067(11)60496-8
    [3] ZHANG Q W, LI X H, FUJIMOTO K R.Pd-promoted Cr/ZnO catalyst for synthesis of methanol from syngas[J].Appl Catal A:Gen, 2006, 309(1):28-32. doi: 10.1016/j.apcata.2006.04.026
    [4] SMITH K J, ANDERSON R B.A chain growth scheme for the higher alcohols synthesis[J].J Catal, 1984, 85(2):428-436. doi: 10.1016/0021-9517(84)90232-X
    [5] LI Z R, FU Y L, JIANG M, MENG M, XIE Y N, HU T D, LIU T.Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J].Catal Lett, 2000, 65(1/3):43-48. doi: 10.1023/A:1019017321625
    [6] SHI X R, JIAO H J, HERMANN K, WANG J G.CO hydrogenation reaction on sulfided molybdenum catalysts[J].J Mol Catal A:Chem, 2009, 312(1/2):7-17.
    [7] XIANG M L, LI D B, XIAO H C, ZHANG J L, QI H J, LI W H, ZHONG B, SUN Y H.Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/beta-Mo2C catalysts[J].Fuel, 2008, 87(4/5):599-603.
    [8] LIU C C, LIN M G, FANG K G, MENG Y, SUN Y H.Preparation of nanostructured molybdenum carbides for CO hydrogenation[J].RSC Adv, 2014, 4(40):20948-20954. doi: 10.1039/c4ra01586j
    [9] MEI D H, ROUSSEAU R, KATHMANN S M, GLEZAKOU V A, ENGELHARD M H, JIANG W L, WANG C M, GERBER M A, WHITE J F, STEVENS D J.Ethanol synthesis from syngas over Rh-based/SiO2 catalysts:A combined experimental and theoretical modeling study[J].J Catal, 2010, 271(2):325-342. doi: 10.1016/j.jcat.2010.02.020
    [10] PRIETO G, CONCEPCION P, MARTINEZ A, MENDOZA E.New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas[J].J Catal, 2011, 280(2):274-288. doi: 10.1016/j.jcat.2011.03.025
    [11] FANG K G, LI D B, LIN M G, XIANG M L, WEI W, SUN Y H.A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J].Catal Today, 2009, 147(2):133-138. doi: 10.1016/j.cattod.2009.01.038
    [12] GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M.Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J].Catal Sci Technol, 2013, 3(5):1324-1332. doi: 10.1039/c3cy00025g
    [13] LU Y W, YU F, HU J, LIU J.Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst[J].Appl Catal A:Gen, 2012, 429:48-58.
    [14] 林明桂, 房克功, 李德宝, 孙予罕.Zn、Mn助剂对CuFe合成低碳醇催化剂的影响[J].物理化学学报, 2008, 24(5):833-838. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200805019.htm

    LIN Ming-gui, FANG Ke-gong, LI De-bao, SUN Yu-han.Effect of Zn and Mn promoters on copper-iron based catalysts for higher alcohol synthesis[J].Acta Phys Chem Sin, 2008, 24(5):833-838. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200805019.htm
    [15] 林明桂, 房克功, 李德宝, 孙予罕.Cu-Fe基催化剂上CO加氢反应过程中物相的转化行为[J].催化学报, 2008, 29(6):559-565. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200806011.htm

    LIN Ming-gui, FANG Ke-gong, LI De-bao, SUN Yu-han.Phase transformation in cu-fe-based catalyst during CO hydrogenation[J].Chin J Catal, 2008, 29(6):559-565. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200806011.htm
    [16] XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H.Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis[J].J Mol Catal A:Chem, 2013, 378:319-325. doi: 10.1016/j.molcata.2013.07.006
    [17] LIN M G, FANG K G, LI D B, SUN Y H.CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J].Catal Commun, 2008, 9(9):1869-1873. doi: 10.1016/j.catcom.2008.03.004
    [18] MOURDIKOUDIS S, LIZ-MARZAN L M.Oleylamine in nanoparticle synthesis[J].Chem Mater, 2013, 25(9):1465-1476. doi: 10.1021/cm4000476
    [19] CARUSO F.Nanoengineering of particle surfaces[J].Adv Mater, 2001, 13(1):11-22. doi: 10.1002/(ISSN)1521-4095
    [20] CHAUDHURI R G, PARIA S.Core/shell nanoparticles:Classes, properties, synthesis mechanisms, characterization, and applications[J].Chem Rev, 2012, 112(4):2373-2433. doi: 10.1021/cr100449n
    [21] COSTI R, SAUNDERS A E, BANIN U.Colloidal hybrid nanostructures:A new type of functional materials[J].Angew Chem, 2010, 49(29):4878-4897. doi: 10.1002/anie.v49:29
    [22] ZHONG C J, MAYE M M.Core-shell assembled nanoparticles as catalysts[J].Adv Mater, 2001, 13(19):1507-1511. doi: 10.1002/1521-4095(200110)13:19<>1.0.CO;2-S
    [23] LI K T, HSU M H, WANG I.Palladium core-porous silica shell-nanoparticles for catalyzing the hydrogenation of 4-carboxybenzaldehyde[J].Catal Commun, 2008, 9(13):2257-2260. doi: 10.1016/j.catcom.2008.05.012
    [24] LI L, HE S C, SONG Y Y, ZHAO J, JI W J, Au C T.Fine-tunable Ni@porous silica core-shell nanocatalysts:Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas[J].J Catal, 2012, 288:54-64. doi: 10.1016/j.jcat.2012.01.004
    [25] ZENG B, HOU B, JIA L T, LI D B, SUN Y H.Fischer-Tropsch synthesis over different structured catalysts:The effect of silica coating onto nanoparticles[J].J Mol Catal A:Chem, 2013, 379:263-268. doi: 10.1016/j.molcata.2013.08.008
    [26] JOO S H, PARK J Y, TSUNG C K, YAMADA Y, YANG P, SOMORJAI G A.Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions[J].Nat Mater, 2009, 8(2):126-131. doi: 10.1038/nmat2329
    [27] HU Y J, WANG Y Q, LU Z H, CHEN X S, XIONG L H.Core-shell nanospheres Pt@SiO2 for catalytic hydrogen production[J].Appl Surf Sci, 2015, 341:185-189. doi: 10.1016/j.apsusc.2015.02.094
    [28] KIRILLOV S A.Surface area and pore volume of a system of particles as a function of their size and packing[J].Microporous Mesoporous Mater, 2009, 122(1/3):234-239. http://www.baidu.com/link?url=X4KTjeqOu27V0fh1Nt0AaSlA3VuNQ8ecFWQWxahnuNyAxVJCHOzhcdd7fUrd8vfJj82qi8W7n3_cuZ0JqqJfvCUGY_E9UxT92LR8zQPaqWmAyF0ml8HcPtTbrHlZ4lp_OJb8xGUt53MkkXmwz4H7Df21N_uysvSZAg7nJm_uprUno9X-efYJbTI-TYA8oWOL2VMX7CizxcyJo9JIOZKZTcyZ0npa9cgHSFXqh8hbkluFZGknVFFDlgzdQElAVh2KWHlbX9OeZ3lDJ-4sXNKFKWyuoSqmnIXZp7-rYWNdmI8AalgZWu48oI8d47WGxU8GACie7vmmPpepdOuz4UNTBFIAnxTCyAMKpcR25iGutqYJEAq_qBm7zZPZj939e11j&wd=&eqid=8402a8be0004847b0000000558bfe184
    [29] 辛勤, 罗孟飞.现代催化研究方法[M].北京:科学出版社, 2009.

    XIN Qing, LUO Meng-fei.Modern catalysis research methods[M].Beijing:Science Press, 2009.
    [30] YAO Q, LU Z H, ZHANG Z, CHEN X, LAN Y.One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J].Scientific Rep, 2014, 4:7597. doi: 10.1038/srep07597
    [31] 肖康.铜基双金属纳米颗粒混合醇合成研究[D].上海:中国科学院上海高等研究院, 2013.

    XIAO Kang.Cu-based bimetallic nanoparticles for higher alcohols synthesis[D].Shanghai:Shanghai Adv ResInst, Chin Acad Sci, 2013.
    [32] LI F, ZHANG L H, EVANS D G, DUAN X.Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J].Colloids Surf A:Phys Eng Asp, 2004, 244(1):169-177. http://www.baidu.com/link?url=5Wt3VeRtJeB_xS0TGHvH0ZV4Q6ujrs9WGMUNvma4rZRWOXt6PsseyyJyseJiFxeJW2qT84FpTat2waHQpH3CMLf64Asb-W-LTSTE5M6Mt9XhDM9zB_ALeK1UXvPB5xls6V0UQHCZsrvej96c06tBLGx81KYtMtrqHwZCqHb9SvDUJpL7QrEDhx8Gsvk_3O-h0T_mh8NLDAg9F4zcLxmBM4i4apgc_XFrVPIpQ7mcmZwNpWan0PBIQuMY9jXFrUdLmxY0SLF5cOsvjqNfFQoxYQxjhnYbJ_W7S4nxLMhf2ANbvUGARWHfE0ZeVsRVoCkSW4mztgcnUE6oz1p2M38EG0DzNLNKGCBy3mUmwtfpNTZovFzqxPFS4wWmfGXrtI8gicnuNPCpct-cftl_jHde8q&wd=&eqid=f7596a54000493ec0000000558bfe176
    [33] LENGLET M, FOULATIER P, DVEB J, ARSÉNE J.Caractérisation de la liaison Cu-O dans les oxydes mixtes CuMM'O 4(M=Fe, Cr;M'=Al, Ga, Mn).Corrélation avec l'effet Jahn-Teller[J].Phys Status Solidi, 1986, 94(2):461-466. doi: 10.1002/(ISSN)1521-396X
    [34] 冉宏峰, 房克功, 林明桂, 孙予罕.Cu/Fe组成对CuFe基低碳醇催化剂的反应性能的影响[J].天然气化工, 2010, 35(4):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201004002.htm

    RAN Hong-feng, FANG Ke-gong, LIN Ming-gui, SUN Yu-han.Effect of Cu/Fe ratios on catalytic performances of co-precipitated Cu-Fe based catalysts for higher alcohols synthesis[J].Nat Gas Chem Ind, 2010, 35(4):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201004002.htm
    [35] LINDNER U, PAPP H.XPS and ISS characterization of potassium or copper containing Fe/Mn oxide catalysts for Fischer-Tropsch synthesis[J].Appl Surf Sci, 1988, 32(1/2):75-92. http://www.baidu.com/link?url=5pH182qh8Z1d-KMAQgDIKsjap_BRyFlSaTL_GV8NCMuOf1YDnPqb5_EkgekC1iWkWGtNAHGJjXuxyAgQilyXv0acOISoX8aohfGXpZ8TfwCLmLF-BEqN3fG7ARs1rg1QqlP_NGZ2Oa9BnbXiF55WuqjDsXtvsNY3zn1XqdoTJLWlZe2losqRwoEAhXP2vDc79NGKpewJGQzWrZpY7YTjTvF6b8NvzjHbPcKAziOdvEbOSDeG7TXr3_l-q6h2sIv2nBkn9dyFAIJARnehbgIJa-CQv4YrcSxINR2tZ2OTH1daJjvWXsCLGx9VQnco5eDNb7830Dx0GWrXGacid_AMAZwknR_8upNfBLp0G5vVmqmhuINoXFVvRKhF98YW8KtDNMQncEI99ezCqQu-30iACa&wd=&eqid=f799fbf600041b330000000558bfe168
    [36] DING M Y, YANG Y, WU B S, XU J, ZHANG C H, XIANG H W, LI Y W.Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis[J].J Mol Catal A:Chem, 2009, 303(1):65-71.
    [37] GRZYBEK T, KLINIK J, BUCZEK B.XPS studies of no selective reduction catalysts after SO2 poisoning[J].Surf Interface Anal, 1995, 23(12):815-822. doi: 10.1002/(ISSN)1096-9918
    [38] GRZYBEK T, PAPP H, BAERNS N.Fe/Mn oxide catalysts for fischer-tropsch synthesis:Part VXPS surface characterization of calcined and reduced samples[J].Appl Catal, 1987, 29(2):335-350. doi: 10.1016/S0166-9834(00)82903-6
    [39] ALLEN G C, HALLAM K R.Characterisation of the spinels M (x) Co (1-x) Fe (2) O (4)(M=Mn, Fe or Ni) using X-ray photoelectron spectroscopy[J].Appl Surf Sci, 1996, 93(1):25-30. doi: 10.1016/0169-4332(95)00186-7
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  164
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-30
  • 修回日期:  2015-11-19

目录

    /

    返回文章
    返回