Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation
-
摘要: 采用共还原-原位包覆法制备一系列SiO2包覆铜铁双金属纳米颗粒的催化剂 (CuFe@SiO2), 借助N2物理吸附、XRD、TEM、SEM-EDS、XPS和H2-TPR等手段对不同Cu/Fe物质的量比的CuFe@SiO2催化剂的物理化学性质进行了表征, 并考察了催化剂在CO加氢合成低碳醇中的催化反应性能。结果表明, 所制得的催化剂均为孔分布处于介孔范围的SiO2包覆的铜铁纳米颗粒。随着Cu/Fe物质的量比降低, 铜铁以复合氧化物存在的比例、总醇及C2+OH选择性先增大后减小。其中, 总醇及C2+OH选择性在Cu/Fe物质的量比为1时达到最大, 这是由于此时催化剂存在较多的CuFe2O4复合氧化物, 铜铁协同作用较强, 同时催化剂也呈现较大的比表面积及孔容, 有利于所生成的醇更快扩散至催化剂表面而避免二次加氢生产烃类。Abstract: A series of SiO2-coated CuFe (SiO2@CuFe) catalysts with different Cu/Fe molar ratios were prepared by co-reduction and in situ coating method.The physicochemical properties of the catalysts were characterized with XRD, TEM, SEM-EDS, XPS and H2-TPR techniques and N2 sorption experiment.It was shown that well-dispersed CuFe nanoparticles were completely coated by mesoporous silica in the as-prepared catalysts.The content of Cu-Fe composite oxide in the catalyst and the selectivity of total alcohols and C2+ alcohols both exhibit a volcano trend with the decrease of Cu/Fe molar ratios.When the Cu/Fe molar ratio was 1, the largest amount of CuFe2O4 was formed, consequently, causing the strongest interaction between Cu and Fe.In addition, the obtained catalyst possessed higher BET surface area and larger BJH pore volume than the other samples.Thus, alcohol products easily diffuse into/out of its pores, thus avoiding the further hydrogenation to hydrocarbons.As a result, it shows the highest selectivity to total alcohols and C2+ alcohols.
-
Key words:
- coated strcture /
- CuFe bimetallic nanoparticle /
- higher alcohols /
- CO hydrogenation
-
表 1 不同Cu/Fe物质的量比包覆结构催化剂的物理性质
Table 1. extural properties of SiO2@CuxFey catalysts with different Cu/Fe molar ratios
Catalyst BET surface
area A/(m2·g-1)Pore volume
v/(cm3·g-1)Pore
diameter d/nmCapacity wmol/% Cu/Fe
(mol ratio)Cu Fe Cu4Fe@SiO2 257.57 0.41 6.46 0.98 0.46 2.12 Cu2Fe@SiO2 221.68 0.23 4.76 0.46 0.27 1.68 CuFe@SiO2 284.05 0.37 4.97 0.35 0.46 0.76 CuFe2@SiO2 251.95 0.31 4.51 0.21 0.62 0.33 表 2 不同Cu/Fe物质的量比包覆结构催化剂的Cu 2p3/2 XPS谱图参数
Table 2. XPS parameters of Cu 2p2/3 of SiO2@CuxFey
Catalyst Binding energy E/eV Peak intensity ratio CuA2+ CuB2+ CuA2+satellite CuB2+satellite I(CuA2+) I(CuB2+) Cu4Fe@SiO2 933.58 935.41 941.99 943.85 0.343 0.657 Cu2Fe@SiO2 933.52 935.19 941.62 943.74 0.247 0.753 CuFe@SiO2 933.34 935.20 941.37 943.83 0.280 0.720 CuFe2@SiO2 932.98 934.60 941.38 943.49 0.326 0.674 表 3 不同Cu/Fe物质的量比包覆结构催化剂的Fe 2p XPS谱图参数
Table 3. XPS parameters of Fe 2p of SiO2@CuxFey
Catalyst Binding energy E/eV Peak intensity ratio FeA3+ FeB3+ FeB3+satellite I(FeA3+) I(FeB3+) Cu4Fe@SiO2 710.78 712.73 718.3 0.421 0.579 Cu2Fe@SiO2 711.16 712.72 719.52 0.396 0.604 CuFe@SiO2 710.87 712.52 719.22 0.399 0.601 CuFe2@SiO2 710.58 712.30 718.59 0.421 0.579 -
[1] MEDFORD A J, LAUSCHE A C, ABILD-PEDERSEN F, TEMEL B, SCHJODT N C, NORSKOV J K, STUDT F.Activity and selectivity trends in synthesis gas conversion to higher alcohols[J].Top Catal, 2014, 57(1/4):135-142. [2] 肖康, 鲍正洪, 齐行振, 王新星, 钟良枢, 房克功, 林明桂, 孙予罕.合成气制混合醇双功能催化研究进展[J].催化学报, 2013, 34(1):116-129. doi: 10.1016/S1872-2067(11)60496-8XIAO Kang, BAO Zheng-hong, QI Xing-zhen, WANG Xin-xing, ZHONG Liang-shu, FANG Ke-gong, LIN Ming-gui, SUN Yu-han.Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J].Chin J Catal, 2013, 34(1):116-129. doi: 10.1016/S1872-2067(11)60496-8 [3] ZHANG Q W, LI X H, FUJIMOTO K R.Pd-promoted Cr/ZnO catalyst for synthesis of methanol from syngas[J].Appl Catal A:Gen, 2006, 309(1):28-32. doi: 10.1016/j.apcata.2006.04.026 [4] SMITH K J, ANDERSON R B.A chain growth scheme for the higher alcohols synthesis[J].J Catal, 1984, 85(2):428-436. doi: 10.1016/0021-9517(84)90232-X [5] LI Z R, FU Y L, JIANG M, MENG M, XIE Y N, HU T D, LIU T.Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J].Catal Lett, 2000, 65(1/3):43-48. doi: 10.1023/A:1019017321625 [6] SHI X R, JIAO H J, HERMANN K, WANG J G.CO hydrogenation reaction on sulfided molybdenum catalysts[J].J Mol Catal A:Chem, 2009, 312(1/2):7-17. [7] XIANG M L, LI D B, XIAO H C, ZHANG J L, QI H J, LI W H, ZHONG B, SUN Y H.Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/beta-Mo2C catalysts[J].Fuel, 2008, 87(4/5):599-603. [8] LIU C C, LIN M G, FANG K G, MENG Y, SUN Y H.Preparation of nanostructured molybdenum carbides for CO hydrogenation[J].RSC Adv, 2014, 4(40):20948-20954. doi: 10.1039/c4ra01586j [9] MEI D H, ROUSSEAU R, KATHMANN S M, GLEZAKOU V A, ENGELHARD M H, JIANG W L, WANG C M, GERBER M A, WHITE J F, STEVENS D J.Ethanol synthesis from syngas over Rh-based/SiO2 catalysts:A combined experimental and theoretical modeling study[J].J Catal, 2010, 271(2):325-342. doi: 10.1016/j.jcat.2010.02.020 [10] PRIETO G, CONCEPCION P, MARTINEZ A, MENDOZA E.New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas[J].J Catal, 2011, 280(2):274-288. doi: 10.1016/j.jcat.2011.03.025 [11] FANG K G, LI D B, LIN M G, XIANG M L, WEI W, SUN Y H.A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J].Catal Today, 2009, 147(2):133-138. doi: 10.1016/j.cattod.2009.01.038 [12] GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M.Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J].Catal Sci Technol, 2013, 3(5):1324-1332. doi: 10.1039/c3cy00025g [13] LU Y W, YU F, HU J, LIU J.Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst[J].Appl Catal A:Gen, 2012, 429:48-58. [14] 林明桂, 房克功, 李德宝, 孙予罕.Zn、Mn助剂对CuFe合成低碳醇催化剂的影响[J].物理化学学报, 2008, 24(5):833-838. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200805019.htmLIN Ming-gui, FANG Ke-gong, LI De-bao, SUN Yu-han.Effect of Zn and Mn promoters on copper-iron based catalysts for higher alcohol synthesis[J].Acta Phys Chem Sin, 2008, 24(5):833-838. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200805019.htm [15] 林明桂, 房克功, 李德宝, 孙予罕.Cu-Fe基催化剂上CO加氢反应过程中物相的转化行为[J].催化学报, 2008, 29(6):559-565. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200806011.htmLIN Ming-gui, FANG Ke-gong, LI De-bao, SUN Yu-han.Phase transformation in cu-fe-based catalyst during CO hydrogenation[J].Chin J Catal, 2008, 29(6):559-565. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200806011.htm [16] XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H.Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis[J].J Mol Catal A:Chem, 2013, 378:319-325. doi: 10.1016/j.molcata.2013.07.006 [17] LIN M G, FANG K G, LI D B, SUN Y H.CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J].Catal Commun, 2008, 9(9):1869-1873. doi: 10.1016/j.catcom.2008.03.004 [18] MOURDIKOUDIS S, LIZ-MARZAN L M.Oleylamine in nanoparticle synthesis[J].Chem Mater, 2013, 25(9):1465-1476. doi: 10.1021/cm4000476 [19] CARUSO F.Nanoengineering of particle surfaces[J].Adv Mater, 2001, 13(1):11-22. doi: 10.1002/(ISSN)1521-4095 [20] CHAUDHURI R G, PARIA S.Core/shell nanoparticles:Classes, properties, synthesis mechanisms, characterization, and applications[J].Chem Rev, 2012, 112(4):2373-2433. doi: 10.1021/cr100449n [21] COSTI R, SAUNDERS A E, BANIN U.Colloidal hybrid nanostructures:A new type of functional materials[J].Angew Chem, 2010, 49(29):4878-4897. doi: 10.1002/anie.v49:29 [22] ZHONG C J, MAYE M M.Core-shell assembled nanoparticles as catalysts[J].Adv Mater, 2001, 13(19):1507-1511. doi: 10.1002/1521-4095(200110)13:19<>1.0.CO;2-S [23] LI K T, HSU M H, WANG I.Palladium core-porous silica shell-nanoparticles for catalyzing the hydrogenation of 4-carboxybenzaldehyde[J].Catal Commun, 2008, 9(13):2257-2260. doi: 10.1016/j.catcom.2008.05.012 [24] LI L, HE S C, SONG Y Y, ZHAO J, JI W J, Au C T.Fine-tunable Ni@porous silica core-shell nanocatalysts:Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas[J].J Catal, 2012, 288:54-64. doi: 10.1016/j.jcat.2012.01.004 [25] ZENG B, HOU B, JIA L T, LI D B, SUN Y H.Fischer-Tropsch synthesis over different structured catalysts:The effect of silica coating onto nanoparticles[J].J Mol Catal A:Chem, 2013, 379:263-268. doi: 10.1016/j.molcata.2013.08.008 [26] JOO S H, PARK J Y, TSUNG C K, YAMADA Y, YANG P, SOMORJAI G A.Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions[J].Nat Mater, 2009, 8(2):126-131. doi: 10.1038/nmat2329 [27] HU Y J, WANG Y Q, LU Z H, CHEN X S, XIONG L H.Core-shell nanospheres Pt@SiO2 for catalytic hydrogen production[J].Appl Surf Sci, 2015, 341:185-189. doi: 10.1016/j.apsusc.2015.02.094 [28] KIRILLOV S A.Surface area and pore volume of a system of particles as a function of their size and packing[J].Microporous Mesoporous Mater, 2009, 122(1/3):234-239. http://www.baidu.com/link?url=X4KTjeqOu27V0fh1Nt0AaSlA3VuNQ8ecFWQWxahnuNyAxVJCHOzhcdd7fUrd8vfJj82qi8W7n3_cuZ0JqqJfvCUGY_E9UxT92LR8zQPaqWmAyF0ml8HcPtTbrHlZ4lp_OJb8xGUt53MkkXmwz4H7Df21N_uysvSZAg7nJm_uprUno9X-efYJbTI-TYA8oWOL2VMX7CizxcyJo9JIOZKZTcyZ0npa9cgHSFXqh8hbkluFZGknVFFDlgzdQElAVh2KWHlbX9OeZ3lDJ-4sXNKFKWyuoSqmnIXZp7-rYWNdmI8AalgZWu48oI8d47WGxU8GACie7vmmPpepdOuz4UNTBFIAnxTCyAMKpcR25iGutqYJEAq_qBm7zZPZj939e11j&wd=&eqid=8402a8be0004847b0000000558bfe184 [29] 辛勤, 罗孟飞.现代催化研究方法[M].北京:科学出版社, 2009.XIN Qing, LUO Meng-fei.Modern catalysis research methods[M].Beijing:Science Press, 2009. [30] YAO Q, LU Z H, ZHANG Z, CHEN X, LAN Y.One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J].Scientific Rep, 2014, 4:7597. doi: 10.1038/srep07597 [31] 肖康.铜基双金属纳米颗粒混合醇合成研究[D].上海:中国科学院上海高等研究院, 2013.XIAO Kang.Cu-based bimetallic nanoparticles for higher alcohols synthesis[D].Shanghai:Shanghai Adv ResInst, Chin Acad Sci, 2013. [32] LI F, ZHANG L H, EVANS D G, DUAN X.Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J].Colloids Surf A:Phys Eng Asp, 2004, 244(1):169-177. http://www.baidu.com/link?url=5Wt3VeRtJeB_xS0TGHvH0ZV4Q6ujrs9WGMUNvma4rZRWOXt6PsseyyJyseJiFxeJW2qT84FpTat2waHQpH3CMLf64Asb-W-LTSTE5M6Mt9XhDM9zB_ALeK1UXvPB5xls6V0UQHCZsrvej96c06tBLGx81KYtMtrqHwZCqHb9SvDUJpL7QrEDhx8Gsvk_3O-h0T_mh8NLDAg9F4zcLxmBM4i4apgc_XFrVPIpQ7mcmZwNpWan0PBIQuMY9jXFrUdLmxY0SLF5cOsvjqNfFQoxYQxjhnYbJ_W7S4nxLMhf2ANbvUGARWHfE0ZeVsRVoCkSW4mztgcnUE6oz1p2M38EG0DzNLNKGCBy3mUmwtfpNTZovFzqxPFS4wWmfGXrtI8gicnuNPCpct-cftl_jHde8q&wd=&eqid=f7596a54000493ec0000000558bfe176 [33] LENGLET M, FOULATIER P, DVEB J, ARSÉNE J.Caractérisation de la liaison Cu-O dans les oxydes mixtes CuMM'O 4(M=Fe, Cr;M'=Al, Ga, Mn).Corrélation avec l'effet Jahn-Teller[J].Phys Status Solidi, 1986, 94(2):461-466. doi: 10.1002/(ISSN)1521-396X [34] 冉宏峰, 房克功, 林明桂, 孙予罕.Cu/Fe组成对CuFe基低碳醇催化剂的反应性能的影响[J].天然气化工, 2010, 35(4):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201004002.htmRAN Hong-feng, FANG Ke-gong, LIN Ming-gui, SUN Yu-han.Effect of Cu/Fe ratios on catalytic performances of co-precipitated Cu-Fe based catalysts for higher alcohols synthesis[J].Nat Gas Chem Ind, 2010, 35(4):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201004002.htm [35] LINDNER U, PAPP H.XPS and ISS characterization of potassium or copper containing Fe/Mn oxide catalysts for Fischer-Tropsch synthesis[J].Appl Surf Sci, 1988, 32(1/2):75-92. http://www.baidu.com/link?url=5pH182qh8Z1d-KMAQgDIKsjap_BRyFlSaTL_GV8NCMuOf1YDnPqb5_EkgekC1iWkWGtNAHGJjXuxyAgQilyXv0acOISoX8aohfGXpZ8TfwCLmLF-BEqN3fG7ARs1rg1QqlP_NGZ2Oa9BnbXiF55WuqjDsXtvsNY3zn1XqdoTJLWlZe2losqRwoEAhXP2vDc79NGKpewJGQzWrZpY7YTjTvF6b8NvzjHbPcKAziOdvEbOSDeG7TXr3_l-q6h2sIv2nBkn9dyFAIJARnehbgIJa-CQv4YrcSxINR2tZ2OTH1daJjvWXsCLGx9VQnco5eDNb7830Dx0GWrXGacid_AMAZwknR_8upNfBLp0G5vVmqmhuINoXFVvRKhF98YW8KtDNMQncEI99ezCqQu-30iACa&wd=&eqid=f799fbf600041b330000000558bfe168 [36] DING M Y, YANG Y, WU B S, XU J, ZHANG C H, XIANG H W, LI Y W.Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis[J].J Mol Catal A:Chem, 2009, 303(1):65-71. [37] GRZYBEK T, KLINIK J, BUCZEK B.XPS studies of no selective reduction catalysts after SO2 poisoning[J].Surf Interface Anal, 1995, 23(12):815-822. doi: 10.1002/(ISSN)1096-9918 [38] GRZYBEK T, PAPP H, BAERNS N.Fe/Mn oxide catalysts for fischer-tropsch synthesis:Part VXPS surface characterization of calcined and reduced samples[J].Appl Catal, 1987, 29(2):335-350. doi: 10.1016/S0166-9834(00)82903-6 [39] ALLEN G C, HALLAM K R.Characterisation of the spinels M (x) Co (1-x) Fe (2) O (4)(M=Mn, Fe or Ni) using X-ray photoelectron spectroscopy[J].Appl Surf Sci, 1996, 93(1):25-30. doi: 10.1016/0169-4332(95)00186-7