留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FLASHCHAIN模型应用于汪清油页岩热解研究

王擎 杨乾坤 许祥成 崔达 张宏喜 王一帆

王擎, 杨乾坤, 许祥成, 崔达, 张宏喜, 王一帆. FLASHCHAIN模型应用于汪清油页岩热解研究[J]. 机械工程学报, 2016, 44(2): 138-145.
引用本文: 王擎, 杨乾坤, 许祥成, 崔达, 张宏喜, 王一帆. FLASHCHAIN模型应用于汪清油页岩热解研究[J]. 机械工程学报, 2016, 44(2): 138-145.
WANG Qing, YANG Qian-kun, XU Xiang-cheng, CUI Da, ZHANG Hong-xi, WANG Yi-fan. Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 138-145.
Citation: WANG Qing, YANG Qian-kun, XU Xiang-cheng, CUI Da, ZHANG Hong-xi, WANG Yi-fan. Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 138-145.

FLASHCHAIN模型应用于汪清油页岩热解研究

基金项目: 

国家自然科学基金 51276034

详细信息
  • 中图分类号: TK16

Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale

More Information
  • 摘要: 采用13C-NMR技术表征出汪清三个矿区油页岩的碳原子化学结构, 并获得碳骨架结构的12个重要参数。利用热重和傅里叶红外联用技术 (TG-FTIR) 得出了在50℃/min升温速率和热解终温600℃下油页岩热解时轻质气体的生成规律。采用基于燃料化学结构的FLASHCHAIN模型对热解产物的析出进行了模拟, 并与实验结果相比较。结果表明, FLASHCHAIN模型用来模拟汪清油页岩热解时, 在520℃之前有较好的效果, 当温度高于520℃时, 由于二次热解反应及页岩中矿物质分解对热解过程的影响, 导致模型的预测值与实验值存在一定的误差, 且随着温度的升高两者之间的误差也随之加大。

     

  • 图  汪清油页岩的13C-NMR谱图

    Figure  1.  13C-NMR spectrum of Wangqing oil shale

    图  FLASHCHAIN模型机理示意图

    Figure  2.  Schematic illustration of the machanisms in Flashchain

    ①: bridge scission; ②: gas from spontaneous condensation of bridges into char links; ③: phase equilibrium

    图  50℃/min升温速率下热解产物产量的预测曲线与实验曲线

    Figure  3.  Prediction curve and the experimental curves of the yield of the product at 50℃/min heating rate

    图  50℃/min升温速率下热解产物产量的预测曲线与实验曲线

    Figure  4.  Prediction and experimental curves of the product yield at 50℃/min

    表  1  油页岩样品的工业分析、元素分析和原子比

    Table  1.   Proximate analysis, ultimate analysis and atomic ratio of oil shale samples

    SampleProximate analysis wad/%Ultimate analysis wad/%Atomic ratio
    MVAFCCHONSH/CO/C
    WQ12.2217.6078.182.0014.301.075.760.690.260.900.30
    WQ31.7815.0281.172.0311.231.415.440.550.201.510.36
    WQ51.8616.1180.281.7512.031.505.560.630.211.500.35
    下载: 导出CSV

    表  2  碳化学位移归属

    Table  2.   Assignments for peaks in 13C-NMR spectra

    Chemical shift δCarbon functionalityWQ1WQ3WQ5
    14-16aliphatic methyl2.482.223.02
    16-22aromatic methyl7.756.069.94
    22-36methylene and aliphatic C (2) carbon47.4334.0558.36
    36-50methine and quaternary carbon18.9112.9721.49
    50-55oxy-methylene2.792.321.57
    55-75oxy-methine3.100.720.69
    75-90oxy-quaternary0.310.750.00
    100-129ortho-oxyaromatic protonated20.4611.8921.70
    129-137bridgehead aromatic carbon8.066.8410.59
    137-148aromatic branched6.204.566.38
    148-164oxy-aromatic carbon2.792.692.09
    164-188carboxyl0.310.310.00
    188-220carbonyl0.620.000.00
    下载: 导出CSV

    表  3  油页岩样品碳骨架结构参数

    Table  3.   Carbon structural parameters of oil shale sample

    SamplefafafacfaHfaNfaPfaSfaBfalfalHfal*falO
    WQ135.1835.18015.9019.282.174.826.2764.8256.148.684.82
    WQ336.0736.07013.3922.683.035.137.7063.9356.367.574.27
    WQ535.6435.64015.2520.391.474.487.4464.3657.726.641.59
    note:fa: total aromatic carbon;fa: aromatic carbons;fac: carbonyl carbon;faH: protonated aromatic carbon;faN: non-protonated aromatic carbon;faP: phenolic hydroxyl carbon;faS: alkyl substituted aromatic carbon;faB: bridgehead aromatic carbon;fal: totalaliphatic carbon;falH: methylene or methane carbon;fal* : methyl and quaternary carbon;falO: oxygen-kinked aliphatic carbon
    下载: 导出CSV

    表  4  结构参数的命名及计算公式

    Table  4.   Nomenclature and equations of structural parameters

    No.SymbolStructural parameterEquation
    1xbratio of aromatic bridging carbons and
    aromatic ring carbons
    ${x_{\rm{b}}}=\frac{{f_{\rm{a}}^{\rm{B}}}}{{{{f'}_{\rm{a}}}}}$
    2Cacarbons of aromatic cluster${x_{\rm{b}}}=\frac{{1 -tan{\rm{h}}\frac{{\left ({{C_{\rm{a}}} -{C_0}} \right)}}{m}}}{2}{{x'}_{\rm{b}}} + \frac{{1 + tan{\rm{h}}\left ({\frac{{{C_{\rm{a}}} -{C_0}}}{m}} \right)}}{2}{{x''}_{\rm{b}}}$
    3Cclcluster carbons${C_{{\rm{cl}}}}={C_{\rm{a}}} + {C_{{\rm{al}}}}$
    4Calaliphatic carbons${C_{{\rm{al}}}}={C_{\rm{a}}}\frac{{{f_{{\rm{al}}}}}}{{{f_{\rm{a}}}}}$
    5Cpcircumferential carbons${C_{\rm{p}}}={C_{{\rm{cl}}}}\left ({f_{\rm{a}}^{\rm{H}} + f_{\rm{a}}^{\rm{S}} + f_{\rm{a}}^{\rm{B}}} \right)$
    6Raaromatic rings${R_{\rm{a}}}=\frac{1}{2}\left ({{C_{\rm{a}}} -{C_{\rm{p}}}} \right) + 1$
    下载: 导出CSV

    表  5  油页岩样品的团簇结构参数

    Table  5.   Structural parameters of oil shale aromatic cluster

    SamplexbCaCclCalCpRa
    WQ10.17148.5324.3715.846.152.19
    WQ30.213410.6429.5018.867.732.46
    WQ50.208710.4029.1818.787.932.24
    下载: 导出CSV
  • [1] 刘招君, 柳蓉.中国油页岩特征及开发利用前景分析[J].地学前缘, 2005, 12(3):315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503044.htm

    LIU Zhao-jun, LIU Rong.Oil shale resource state and evaluating system[J].Earth Science Frontiers, 2005, 12(3):315-323. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503044.htm
    [2] HOU X L.Prospect of oil shale and shale oil industry.Proceedings international conference on oil shale oil[M].Beijing:Chemical Industry Press, 1988:7-15.
    [3] QIAN J L, YIN L.Oil shale-petroleum alternative[M].Beijing:China Petrochemical Press, 2008:30-34.
    [4] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.1.Formulation[J].Energy Fuels, 1991, 5(5):647-665. doi: 10.1021/ef00029a006
    [5] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.2.Impact of operating conditions[J].Energy Fuels, 1991, 5(5):665-673. doi: 10.1021/ef00029a007
    [6] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.3.Modeling the Behavior of Various Coals[J].Energy Fuels, 1991, 5(5):673-683. doi: 10.1021/ef00029a008
    [7] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.4.Predicting ultimate yields from ultimate analyses alone[J].Energy Fuels, 1994, 8(3):659-670. doi: 10.1021/ef00045a022
    [8] NIKSA S.FLASHCHAIN Theory for rapid coal devolatilization.5.Interpredicting rates of devolatilization for various coal types and operating conditions[J].Energy Fuels, 1994, 8(3):671-679. doi: 10.1021/ef00045a023
    [9] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.6.Predicting the evolution of fuel nitrogen from various coals[J].Energy Fuels, 1995, 9(3):467-478. doi: 10.1021/ef00051a011
    [10] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.7.Predicting the release of oxygen species from various coals[J].Energy Fuels, 1996, 10(1):173-187. doi: 10.1021/ef950067l
    [11] SOLOMON P R, HAMBIEN D G, CARANGRLO R M.General model of coal devolatilization[J].Energy Fuels, 1988, 2(4):405-422. doi: 10.1021/ef00010a006
    [12] GRANT D M, PUGMIRE R J, FLETCHER T H.Chemical model of coal devolatilization using percolation lattice statistics[J].Energy Fuels, 1989, 3(2):175-186. doi: 10.1021/ef00014a011
    [13] FLETCHER T H, KERSTEIN A R, PUGMIRE R J.Chemical percolation model for devolatilization.2.Temperature and heating rate effects on product yields[J].Energy Fuels, 1990, 4(1):54-60. doi: 10.1021/ef00019a010
    [14] THOMAS FLETCHER.Chemical percolation model for devolatilization[J].Energy Fuels, 1992, 6(1):414-431.
    [15] JUPUDI R S, ZAMANSKY V, FLETCHER T H.Prediction of light gas composition in coal devolatilization[J].Energy Fuels, 2009, 23(6):3063-3067. doi: 10.1021/ef9001346
    [16] NIKSA S.Predicting the rapid devolatilization of diverse forms of biomass with bio-FLASHCHAIN[J].Proc Combust Inst, 2000, 28(2):2727-2733. doi: 10.1016/S0082-0784(00)80693-1
    [17] CHEN Y, CHARPENAY S, JENSEN A.Modeling of biomass pyrolysis kinetics[J].Symp (Int) Combust, 1998, 27(1):1327-1334. doi: 10.1016/S0082-0784(98)80537-7
    [18] FLETCHER T H, HARLAND R, WEBSTER J.Prediction of tar and light gas during pyrolysis of black liquor and biomass[J].Energy Fuels, 2012, 26(6):3381-3387. doi: 10.1021/ef300574n
    [19] DOMINIC B.An advanced model of coal devolatilization based on chemical structure[D].Provo:Brigham Young University, 1999:39-40.
    [20] 秦匡宗, 劳永新.茂名和抚顺油页岩组成结构的研究I.有机质的芳碳结构[J].燃料化学学报, 1985, 13(2):133-140.

    QIN Kuang-zong, LAO Yong-xin.Investigation on the constitution and structure of Maoming and Fushun oil shale I.The structural components of the organic matter[J].J Fuel Chem Technol, 1985, 13(2):133-140.
    [21] TONG J, HAN X, WANG S.Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (Solid-State 13C-NMR, XPS, FT-IR and XRD)[J].Energy Fuels, 2011, 25(9):4006-4013. doi: 10.1021/ef200738p
    [22] SOLUM M S, PUGMIRE R J, GRANT D M.13C solid-state NMR argonne premium coals[J].Energy Fuels, 1989, 3(2):187-193. doi: 10.1021/ef00014a012
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  122
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-02
  • 修回日期:  2015-10-19

目录

    /

    返回文章
    返回