Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature
-
摘要: 考察了SO2对Mn-Ce/TiO2低温脱硝催化剂活性的影响, 利用XRD、BET、SEM和XPS对其毒化作用的原因进行分析。结果表明, SO2对催化剂活性有明显的抑制作用, 使NOx去除率由84%降至42%左右。主要是SO2的加入造成催化剂比表面积减小, 孔径为5-10 nm的孔数量减少, 且催化剂晶相由锐钛矿型转化成金红石型结构, 活性组分MnOx发生晶化现象, 破坏了Mn-Ti间的强相互作用。催化剂理化性质的变化造成吸附态氧转化为晶格氧的路径受阻、MnO2含量减少和CeOx储氧功能减弱, 并且产生氧阻效应而使NO吸附和解吸受阻, 造成催化剂活性降低。同时生成的硫酸铵盐在催化剂表面沉积, 覆盖了催化剂表面的Lewis酸性位, 使其对NH3吸附能力减弱。
-
关键词:
- 低温SCR /
- Mn-Ce/TiO2催化剂 /
- SO2 /
- 毒化作用
Abstract: Effects of SO2 on performance of Mn-Ce/TiO2 catalysts were investigated in the selective catalytic reduction of NO with NH3.The catalysts were characterized by BET surface area, X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), respectively.The results show that SO2 has inhibitory effect on the selective catalytic reduction (SCR), and NOx conversion decreases from 84% to 42% at 140℃.This is mainly because the presence of SO2 results in the decrease of the specific surface area of the catalysis and the pore size distribution of 5-10 nm.SO2 can cause TiO2 transformation from anatase to rutile phase, the crystallization phenomenon of active components MnOx, and the decrease of the strong interaction between Mn and Ti.The variations of physical and chemical properties of poisoned Mn-Ce/TiO2 catalyst block the O2-→O-→O2- conversion path, which reduces the proportion of higher catalytic activity component MnO2 in MnOx, weakens oxygen storage ability of CeOx, and accumulates absorbed oxygen on the catalyst surface decreasing the adsorption and desorption of NO on active sites.Ammonium sulfate formed on the catalyst surface covers the Lewis acid sites and decreases the adsorption amount of NH3.-
Key words:
- low temperature SCR /
- Mn-Ce/TiO2 catalyst /
- SO2 /
- poisoning effect
-
表 1 催化剂表面元素含量
Table 1. Element contents on catalyst surface
Catalyst Conent w/% Mn Ce O Ti N S Non-poisoned 8.74 3.69 65.89 21.68 0 0 SO2 poisoning 7.93 3.51 62.16 16.87 1.82 5.98 -
[1] TIAN W, YANG H S, FAN X Y, ZHANG X B.Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J].J Hazard Mater, 2011, 188(1/3):105-109. http://www.baidu.com/link?url=80YIJxJbjne19v8geYKMSkwxIu2s6-bjIrO39SBypIsGXFbeiowN3SNAvTPhzHY1sLo34BcAYy75ZyBBysz_WNcgESPamvMgWPTZO_ebVlHF5E9aJAlfvJhElFoQhi91aAjEsUSo3UJpzDimT9HgqMwwZYcDSmoszxIILj7e4ckDv5k4ng-svI26PP9J-S1JgViCFyqcxmwyNaQvqmAzS0XV6_jLBTUfjN-tKy6EYB_NCp97dCOjCD5nbZpcnCc4tM43G0hR8ccl113OZSTEi2m3g73mrmWDbbSfyjZ4CNJLxCSzkGP-WWqFXBHhX8XhqLX1rGNMXf1vtukE1mYZyRSjZBuSBf0FZ6owGiDYKfG&wd=&eqid=df6359fc00045d4d0000000558bfe207 [2] LIU W, TONG Z Q, LUO J.Low temperature selective catalytic reduction of NO with NH3 over Ce-Mn/TiO2 catalyst[J].Acta Sci Circumst, 2006, 26(8):1240-1245. http://www.baidu.com/link?url=jMmLX6xLi2U4qWstlNdqqEHTKuThRx7SvWkAaSlTO_2OpiEnBdZSCTKgahYM4z9KqTpeG_TvQZzlhxx80PeHD3pCWzgBy1VArXO5IRUuu2YYN7Erht14paEAuuCjIqCf__DS4jRwAUvREWZodggTp2ZfuIsaMRIQk5UUT2cgFqcZqvL4qbDTmuHHsLzf4arq6B9F6SzuLAeHwhtMJLLu4gKtJ4FPatnWaLHa-YQ0fq_k4scOmuJlIeQR9yCjx4UBa_nNbHXdke6nDDtoANusMFp8RhnrOT-pvHz87iCRsAxzhX2e9viAncmxCk00Kak6RjodXvBCqXDk0arVslta7njCUJtVIG7Q9fN_IrlImGTzdnlHyZu_VnabiEAK1r2_uWazYbFurLt5_PHSt_jjxMyEyT7k4RHxsgCiK_ncKs6fbNeANIKidHkgbXqPszxvEEOXjqLQU5wHhZRVAgPWxcyHH54pbieo4nmJl-V_HWPv_qlNVOZCSUdI8_aPYzmR5yaX2BWwrTsjlw6DH3i2y71z1cihd-kK7NJr7JpMrurzkpj_DLfn3uro5rdWE6B5tCPTuJyn0s98Les08412P_6jmzBjaCyIdRvUix_kVMk_mt1ozXk8zAl81ICtz1fa&wd=&eqid=db5e8554000416d80000000558bfe214 [3] BUSCA G, LIETTI L, RAMIS G, BERTI F.Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts[J].Appl Catal B:Environ, 1998, 18(1/2):1-36. http://www.baidu.com/link?url=k441JPF6WV26JNHtp9h_ouEAEpO45Qt6CWAatH0eG5lIa02dmDWIrZYzMWNYiclHAx0guNjqA1oplhYWZxzYPCjZOiNvaBMzOcwI8xWADv2Bvqa6sabwdmGrEoCEIEHBKh639Fdz4coj7aSH8KILZun2TRRx_Blag0ifx_gJwsRFLZv1OIbf0v-FwCVsWnf8Xx32yIhilm7WaV-VSI0cQsqDBA5urt15jFp86UEJXXcaEVLUBzgu98i7D1RfwBZbgohlM4oE8_LnBE4j79xn3nrsGhDPU5zmW3U7zBtdavIDzQowIB0xJf2krdgW4io7UBuoyS8y6Rf1ItCirdiwQLYyMh9IhKcDtZErvLPQpav-mf7adyQNNKsqhA2YncXdnOkzMdU8-p-4HqUsmOtiD_&wd=&eqid=df322c6a0004154a0000000558bfe222 [4] FORZATTI P.Present ststus and perspective in de-NOx SCR catalysis[J].Appl Catal A:Gen, 2001, 222(1/2):221-236. http://www.baidu.com/link?url=LFUxFi0vmMQO6rnAOpFMe60qrPFsYRpDA_B-e-tE4wpVLchgzOQtuMYJFR4qeryBP5LzhbkFTEZ5beFSj84-vvZD2nQ2jC3kLR5J1shY56pNG2Ni5nAiq7hJpVjdw9Vs5VtSHoun4nF8sG7KmighxPKtPoosP1uo9dyL_Ib3DhvTPsox8ZdsL5NZQF1jPhP36AjrD2LgIj3ussDQkKC7tVLKziplJrRqZxjeI5emsk5-naG_mHV65iHglMcnvKC3bI42SPWazO-3zfT_z-EMH_LNIOTTMa_7qkbKguMJIaKsBBPBAopc_agJZdUGrwxu&wd=&eqid=dd2cedc20003f1330000000558bfe22e [5] CHEN Z H, YANG Q, LI H, LI X H, WANG L F, TSANG C.Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J].J Catal, 2010, 276(1):56-65. doi: 10.1016/j.jcat.2010.08.016 [6] ZUO J L, CHEN Z H, WANG F R, YU Y H, WANG L F, LI X H.Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts[J].Ind Eng Chem Res, 2014, 53(7):2647-2655. doi: 10.1021/ie404224y [7] CHEN Z H, WANG F R, LI H, YANG Q, WANG L F, LI X H.Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J].Ind Eng Chem Res, 2012, 51(1):202-212. doi: 10.1021/ie201894c [8] LIU Z M, ZHU J Z, LI J H, MA L L, WOO S L.Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J].ACS Appl Mater Inter, 2014, 6(16):14500-14508. doi: 10.1021/am5038164 [9] GU T T, JIN R B, LIU Y, LIU H F, WENG X L, WU Z B.Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature[J].Appl Catal B:Environ, 2013, 129(3):30-38. [10] WU Z B, JIN R B, WANG H Q, LIU Y.Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J].Catal Commun, 2009, 10(6):935-939. doi: 10.1016/j.catcom.2008.12.032 [11] JIN R B, LIU Y, WANG Y, CEN W L, WU Z B, WANG H Q, WENG X L.The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J].Appl Catal B:Environ, 2014, 148/149(4):582-588. http://www.baidu.com/link?url=fj92pPb2jgSsUjmya46VVgcdKzdE8ulOz4m6MdwOp4tiwB380a5r41FtQLfvNAtCtD8OqFP5UWCb4M0F8G1Zj0j2P6_5nTej0hsd-pKjinwv40SfMiY3zDVRraBZ2oXtjcfv-7IgUp9OyrHXCMpvDFRw9BSI638jT0XfAKWeMu3SXweQhEm8nwkt0gaFpRyqPngUW2sVchn_Wq03K--K_MIeZ8lTbGjI3-nSgkJjhyUkZuZKmkxOJmnMf_zxCuma57_U1YciEArsYHaexVQDsfSfITJvJBBReVp8yY4seL9E27m-3e_ELc8PPzdL17NaibrTbBz5YW7njm6TxuyVHn4CPj2JZpFK6-XrOzeaCfvaVUWhc25Ru-HJBe3sd6R-Huxkrz5tfi8T-tyEdptmWq&wd=&eqid=df322c6a000418d40000000558bfe248 [12] SING K S W, EVEWETT D H, HAUL R A W, MOSCOU L, PIEROTTO R A, ROUQUÉROL J, SIEMIENIEWSKA T.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure Appl Chem, 1985, 57(4):603-619. [13] TANG X L, HAO J M, YI H H.Low-temperature SCR of NO with NH3 over AC/C supported manganese-catalysts[J].Catal Today, 2007, 126(3/4):406-411. [14] ZHANG X, JI L Y, ZHANG S C, YANG W S.Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor[J].J Power Sources, 2007, 173(2):1017-1023. doi: 10.1016/j.jpowsour.2007.08.083 [15] KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A.Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J].Appl Catal B:Environ, 1994, 3(2/3):173-189. [16] PAPARAZZO E.Some notes on XPS Mn 2p and Ce 3d spectra of MnOx-ceria catalysts[J].Catal Today, 2012, 185(1):319-321. doi: 10.1016/j.cattod.2012.02.014 [17] GUO Y F, LIAO X B, HE J H, QU W J, YE D Q.Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene[J].Catal Today, 2010, 153(3/4):176-183. [18] YE Q, ZHAO J S, HUO F F, WANG J, CHENG S Y, KANG T F, DAI H X.Nanosized Ag/α-MnO2 catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene[J].Catal Today, 2011, 175(1):603-609. doi: 10.1016/j.cattod.2011.04.008 [19] JARRIGE J, VERVISCH P.Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst[J].Appl Catal B:Environ, 2009, 90(1):74-82. [20] 陈建军.锰基催化剂研制及其低温选择催化还原NOx机理研究[D].北京:清华大学, 2007.CHEN Jian-jun.Study on Mn-based catalysts and mechanism for selective catalytic reduction of NOx at low-temperature[D].Beijing:Tsinghua University, 2007. [21] REDDY B M, SREEKANTH P M, YAMADA Y, XU Q, KOBAYASHI T.Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques[J].Appl Catal A:Gen, 2002, 228(1/2):269-278. [22] 陈博吴, 马运生, 丁良兵, 许令顺, 邬宗芸, 袁青, 黄伟新.NO在Cu (111) 表面吸附和分解的XPS和TPD研究:不同氧物种的影响[J].催化学报, 2013, 34(5):964-972. doi: 10.1016/S1872-2067(12)60585-3CHEN Bo-wu, MA Yun-sheng, DING Liang-bing, XU Ling-shun, WU Zong-yun, YUAN Qing, HUANG Wei-xin.XPS and TPD study of NO interaction with Cu (111):Role of different oxygen species[J].Chin J Catal, 2013, 34(5):964-972. doi: 10.1016/S1872-2067(12)60585-3 [23] ROMANO E J, SCHULZ K H.A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides[J].Appl Surf Sci, 2005, 246(1/3):262-270. [24] TAUSTER S J, FUNG S C, BAKER R T, HORSLEY J A.Strong interactions in supported-metal catalysts[J].Science, 1981, 211(4487):1121-1125. doi: 10.1126/science.211.4487.1121