留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先锋褐煤在水热处理过程中的结构演绎

刘鹏 周扬 鲁锡兰 王岚岚 潘铁英 张德祥

刘鹏, 周扬, 鲁锡兰, 王岚岚, 潘铁英, 张德祥. 先锋褐煤在水热处理过程中的结构演绎[J]. 机械工程学报, 2016, 44(2): 129-137.
引用本文: 刘鹏, 周扬, 鲁锡兰, 王岚岚, 潘铁英, 张德祥. 先锋褐煤在水热处理过程中的结构演绎[J]. 机械工程学报, 2016, 44(2): 129-137.
LIU Peng, ZHOU Yang, LU Xi-lan, WANG Lan-lan, PAN Tie-ying, ZHANG De-xiang. Structural evolution of Xianfeng lignite during hydrothermal treatment[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 129-137.
Citation: LIU Peng, ZHOU Yang, LU Xi-lan, WANG Lan-lan, PAN Tie-ying, ZHANG De-xiang. Structural evolution of Xianfeng lignite during hydrothermal treatment[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 44(2): 129-137.

先锋褐煤在水热处理过程中的结构演绎

基金项目: 

国家重点基础研究发展规划 973计划, 2011CB201304

详细信息
  • 中图分类号: TQ520.61

Structural evolution of Xianfeng lignite during hydrothermal treatment

More Information
  • 摘要: 以先锋褐煤 (XF) 为原料, 在高压反应釜中考察了水热处理过程中褐煤的结构变化, 通过13C固体核磁共振 (NMR) 和傅里叶变换红外光谱进行了分析表征。结果表明, 在低于240℃的水热处理条件下, 煤有机分子结构中的弱化学键有一定断裂, 含氧官能团逐步减少; 水中氢以离子形态迁移至褐煤中, 处理后褐煤结构中甲基比例先增加后减少, 次甲基比例由原煤的4.80%增加至XF-240的13.16%;释放的气体中主要是CO2, 烃类气体组分随处理温度的升高略有增加。当水热处理温度高于240℃时, 褐煤中部分共价键开始断裂, 释放的烃类气体 (C1-4) 由240℃时的2.13%增加至300℃时的8.59%, 脂肪碳比例由XF-240的44.83%降低至XF-300的39.49%, 与氧连接的碳比例由XF-240的12.57%降低至XF-300的1.49%。水热处理对褐煤的脱氧提质效果显著, 300℃时氧含量降低约30%, 芳香碳比例增加至60.50%, 比原煤提高19%。

     

  • 图  13C-NMR波谱谱图

    Figure  1.  13C-NMR spectra

    图  13C-NMR谱图分峰拟合模拟图

    Figure  2.  Fitted 13C-NMR spectra

    图  FT-IR光谱谱图

    Figure  3.  Fitted FT-IR spectra

    图  XF褐煤水热处理结构演绎图

    Figure  4.  Schematic for structural evolution of XF during hydrothermal treatment

    表  1  褐煤干燥提质工艺参数

    Table  1.   Comparison of process parameters of lignite upgrading

    ProjectEvaporation dryingNon-evaporation drying
    WTAHPUD-KMTEHTD
    Temperature t/℃100-120105-110180-240150-220220-300
    Operating pressure p/MPa0.30-0.40atmospheric1710saturated vapor pressure
    Heavy water absorptionyesnononono
    Pore structureunchangeddecreasedecreasedecreasedecrease
    Oxygen contentunchangedunchangeddecreasedecreasedecrease
    Dewaterability t/h110110125-
    下载: 导出CSV

    表  2  先锋褐煤处理前后工业与元素分析

    Table  2.   Proximate and ultimate analyses of XF and treated XF

    SampleRecovery a
    w/%
    Proximate analyses w/%Ultimate analyses wdaf /%
    AdVdafFCdafCHNSO c
    XF-8.4252.5847.4271.265.062.250.9420.49
    XF-200 b93.158.1051.5148.4972.905.072.350.8118.87
    XF-22091.898.5349.1250.8872.244.912.420.8619.56
    XF-24090.118.4547.7352.2773.114.822.400.8718.79
    XF-26088.328.2547.8552.1575.334.652.390.7616.87
    XF-30081.769.2243.0556.9577.654.942.220.8214.37
    a: recovery is the mass ratio of treated lignite to raw lignite during hydrothermal treatment; b: “XF-200” indicates the IM was treated at 200℃for 30min; c: by difference
    下载: 导出CSV

    表  3  先锋褐煤13C-NMR中不同类型碳对应的化学位移

    Table  3.   Main assignments of chemical shift values for different structural carbons in solid-state 13C-NMR spectra of XF lignite

    AssignmentLocationChemical shift δCharacter
    Aliphatic methylR-CH314-22fal3
    Aromatic methyl22-26fala
    Methylene-CH2,26-37fal2
    Quaternery sp3 C-CH--C37-50fal1, fal*
    Oxygen aliphatic carbonR-O-R,50-95falO
    Protonated aromatic carbon95-124faH
    Bridging ring junction aromatic carbon124-137faB
    Aliphatic substituted aromatic carbon137-149faS
    Oxygen aromatic carbon149-164faO
    Carboxyl, quinone and carbonyl carbonRCOOH, RCOR164-220faCC
    fal3: fraction of aliphatic methyl carbon; fala: fraction of aromatic methyl carbon; fal2: fraction of methylene carbon; fal1: fraction of methine carbon; fal*: fraction of carbon that is aliphatic and either quaternary, methyl, or mobile methylene; falO: fraction of total carbon associated with aliphatic ethers and alcohols; faH: protonated aromatic carbon; faB: bridgehead aromatic carbon; faS: alkyl substituted aromatic carbon; faO: oxygenated aromatic carbon; faCC: fraction of carbonyl, quinone and carboxyl carbons
    下载: 导出CSV

    表  4  XF褐煤含氧官能团在FT-IR光谱谱图中对应的位置

    Table  4.   Band assignments of oxygen functional groups for the FT-IR spectrum of XF lignite

    Wavenumber σ/ cm-1Assignment
    1690-1720C-O, ketone, aldehyde and -COOH
    1600-1660conjugated C=O
    1450-1600aromatic C=C
    1375-1450CH3-Ar, CH3 and CH2
    1110-1300C-O phenol
    1000-1110ash, alkyl ethers,
    Si-O and aryl ethers
    下载: 导出CSV

    表  5  先锋褐煤处理前后不同类型有机碳的分布

    Table  5.   Carbon structure distributions of the raw and treated XF

    SampleDistribution /%
    fal3falafal2fal1+fal*falOfaHfaBfaOfaSfaCC
    XF12.7714.0011.354.805.278.9126.615.427.223.65
    XF-20016.9515.387.815.141.4911.8025.617.125.273.43
    XF-2207.9917.6512.715.071.758.6529.763.9410.182.29
    XF-2408.1117.136.4313.1605.3931.825.388.294.28
    XF-2606.9220.5210.336.2906.3029.219.798.781.87
    XF-30010.3416.059.313.7903.8619.3635.791.490
    fal3: fraction of aliphatic methyl carbon; fala: fraction of aromatic methyl carbon; fal2: fraction of methylene carbon; fal1: fraction of methine carbon; fal*: fraction of carbon that is aliphatic and either quaternary, methyl, or mobile methylene; falO: fraction of total carbon associated with aliphatic ethers and alcohols; faH: protonated aromatic carbon; faB: bridgehead aromatic carbon; faS: alkyl substituted aromatic carbon; faO: oxygenated aromatic carbon; faCC: fraction of carbonyl, quinone and carboxyl carbons
    下载: 导出CSV

    表  6  先锋褐煤FT-IR光谱谱图上含氧官能团区域的变化

    Table  6.   Oxygen functional groups band of the raw and treated XF for the FT-IR spectrum

    PeakPosition σ/cm-1AssignmentXF area percentage /%XF-240 area percentage /%
    11035alkyl ethers,Si-O8.6211.45
    21100aryl ethers6.825.69
    31167C-O phenol2.420.45
    41207C-O phenol4.4017.36
    51269C-O phenol3.390.42
    61310C-O phenol3.974.35
    71376CH3-Ar5.922.20
    81442CH3, CH28.1613.02
    91502aromatic C=C2.122.37
    101556aromatic C=C5.600.23
    111588aromatic C=C16.548.63
    121620conjugated C=O13.4826.53
    131656conjugated C=O0.610.68
    141696carboxyl acids17.946.63
    下载: 导出CSV

    表  7  褐煤在水热处理过程中析出气体组分的变化

    Table  7.   Variation of gas composition during hydrothermal treatment

    Temperature t/℃Volume percentage φ/%
    H2COCO2CH4C2C3C4
    2003.412.9692.830.80---
    2202.112.4694.071.000.200.140.02
    2401.172.6994.021.580.310.200.03
    2605.912.7588.611.970.450.270.04
    3003.392.0186.026.111.480.830.16
    *:the hydrothermal treatment temperature
    下载: 导出CSV
  • [1] BP Group.BP Statistical review of world energy (2014.6)[EB/OL].http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html.
    [2] 尚建选, 马宝岐, 张秋民, 沈和平.低阶煤分质转化多联产技术[M].北京:煤炭工业出版社, 2013.

    SHANG Jian-xuan, MA Bao-qi, ZHANG Qiu-min, SHEN He-ping.Low rank coal mass transfer and poly-generation technology[M].Beijing:Press of Coal Industry, 2013.
    [3] YU J, TAHMASEBI A, HAN Y, YIN F, LI X.A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization[J].Fuel Process Technol, 2013, 106:9-20.
    [4] KATAMBULA H, GUPTA R.Low-grade coals:A review of some prospective upgrading technologies[J].Energy Fuels, 2009, 23(7):3392-3405. doi: 10.1021/ef801140t
    [5] 周剑林, 王永刚, 黄鑫, 张书, 林雄超.低阶煤中含氧官能团分布的研究[J].燃料化学学报, 2013, 42(2):134-138. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18113.shtml

    ZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Shu, LIN Xiong-chao.Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J].J Fuel Chem Technol, 2013, 42(2):134-138. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18113.shtml
    [6] RWE Power.The WTA technology:An advanced method of processing and lignite[EB/OL].http://www.Rwe.com/web/cms/en/213182/rwe-power-ag/innobations/coal-innov-ation-centre/fluidized-bed-drying-with-internal-waste-heat-utilization-wta.
    [7] 朱书全.褐煤提质技术开发现状及分析[J].洁净煤技术, 2011, 17(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201101002.htm

    ZHU Shu-quan.Development status and analysis of lignite quality improvement technol[J].Clean Coal Technol, 2011, 17(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201101002.htm
    [8] 戴和武, 谢可玉.褐煤利用技术[M].北京:煤炭工业出版社, 1999.

    DAI He-wu, XIE Ke-yu.Lignite utilization technology[M].Beijing:Press of Coal Industry, 1999.
    [9] BERGINS C.Kinetics and mechanism during mechanical/thermal dewatering of lignite[J].Fuel, 2003, 82(4):355-364. doi: 10.1016/S0016-2361(02)00310-1
    [10] YU Y J, LIU J Z, CEN K F.Properties of coal water slurry prepared with the solid and liquid products of hydrothermal dewatering of brown coal[J].Ind Eng Chem Res, 2014, 53:4511-4517. doi: 10.1021/ie5000592
    [11] BUTLER C J, GREEN A M, CHAFFEE A L.The fate of trace elements during MTE and HTD dewatering of Latrobe Valley brown coals[J].Coal Prep, 2007, 27(4):210-229. doi: 10.1080/07349340701640844
    [12] MAPSTONE J O.Effect of hydrothermal pretreatment on coal structure and the mild gasification process[J].Energy Fuels, 1991, 5(5):695-700. doi: 10.1021/ef00029a011
    [13] FAVAS G, JACKSON W R.Hydrothermal dewatering of lower rank coals.1.Effects of process conditions on the properties of dried product[J].Fuel, 2003, 82(1):53-57. doi: 10.1016/S0016-2361(02)00192-8
    [14] FAVAS G, JACKSON W R.Hydrothermal dewatering of lower rank coals.2.Effects of coal characteristics for a range of Australian and international coals[J].Fuel, 2003, 82(1):59-69. doi: 10.1016/S0016-2361(02)00191-6
    [15] FAVAS G, JACKSON W R, MARSHALL M.Hydrothermal dewatering of lower rank coals.3.High-concentration slurries from hydrothermally treated lower rank coals[J].Fuel, 2003, 82(1):71-79. doi: 10.1016/S0016-2361(02)00190-4
    [16] SAKAGUCHI M, LAURSEN K, NAKAGAWA H, MIURA K.Hydrothermal upgrading of Loy Yang Brown coal-Effect of upgrading conditions on the characteristics of the products[J].Fuel Process Technol, 2008, 89:391-396. doi: 10.1016/j.fuproc.2007.11.008
    [17] 常鸿雁, 徐文娟, 张德祥, 高晋生.加压水蒸气下年轻煤脱氧改质的研究[J].煤炭转化, 2005, 28(1):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200501005.htm

    CHANG Hong-yan, XU Wen-juan, ZHANG De-xiang, GAO Jin-sheng.Study on the deoxy-modification of low rank coals under pressurized vapour conditions[J].Coal Convers, 2005, 28(1):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200501005.htm
    [18] 刘红缨, 郜翔, 张明阳, 朱彦敏, 朱书全.水热法改性褐煤及含氧官能团与水相互作用的研究[J].燃料化学学报, 2014, 42(3):284-289. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18368.shtml

    LIU Hong-ying, GAO Xiang, ZHANG Ming-yang, ZHU Yan-ming, ZHU Shu-quan.Study on lignite modified by hydrothermal and the interaction between the oxygen containing functional groups and water[J].J Fuel Chem Technol, 2014, 42(3):284-289. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18368.shtml
    [19] 黄鑫, 张书, 林雄超, 王永刚, 徐敏.低温加压热解脱氧对胜利褐煤亲水性的影响[J].燃料化学学报, 2013, 41(12):1409-1414. doi: 10.1016/S1872-5813(14)60005-0

    HUANG Xin, ZHANG Shu, LIN Xiong-chao, WANG Yong-gang, XU Min.Deoxygenation effect on hydrophilicity changes of Shengli lignite during pressurized pyrolysis at low temperature[J].J Fuel Chem Technol, 2013, 41(12):1409-1414. doi: 10.1016/S1872-5813(14)60005-0
    [20] INOUE T, OKUMA O, MASUDA K, YASUMURO M, MIURA K.Hydrothermal treatment of brown coal to improve the space time yield of a direct liquefaction reactor[J].Energy Fuels, 2012, 26(4):2198-2203. doi: 10.1021/ef300095s
    [21] INOUE T, OKUMA O, MASUDA K, YASUMURO M, MIURA K.Direct liquefaction of brown coal using a 0.1 ton/day process development unit:Effect of hydrothermal treatment on scale deposition and liquefaction yield[J].Energy Fuels, 2012, 26(9):5821-5827. doi: 10.1021/ef300999r
    [22] FU J, WANG J.Enhanced slurryability and rheological behaviors of two low-rank coals by thermal and hydrothermal pretreatments[J].Powder Technol, 2014, 266:183-190. doi: 10.1016/j.powtec.2014.06.034
    [23] YU Y J, LIU J Z, WANG R, ZHOU J, CEN K F.Effect of hydrothermal dewatering on the slurryability of brown coals[J].Energ Convers Manage, 2012, 57:8-12. doi: 10.1016/j.enconman.2011.11.016
    [24] 葛立超, 张彦威, 应芝, 王智化, 周俊虎, 岑可法.水热处理对我国典型褐煤气化特性的影响[J].中国电机工程学报, 2013, 33(32):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201332004.htm

    GE Li-chao, ZHANG Yan-wei, YING Zhi, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa.Influence of the hydrothermal dewatering on the gasification characteristics of typical chinese lignite[J].Proc CSEE, 2013, 33(32):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201332004.htm
    [25] 相建华, 曾凡桂, 李彬, 张莉, 李美芬, 梁虎珍.成庄无烟煤大分子结构模型及其分子模拟[J].燃料化学学报, 2013, 41(4):391-399. doi: 10.1016/S1872-5813(13)60022-5

    XIANG Jian-hua, ZEGN Fan-gui, LI Bin, ZHAGN Li, LI Mei-fen, LIANG Hu-zhen.Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J].J Fuel Chem Technol, 2013, 41(4):391-399. doi: 10.1016/S1872-5813(13)60022-5
    [26] YAN J, BAI Z, BAI J, GUO Z, LI W.Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal[J].Fuel, 2014, 128:39-45. doi: 10.1016/j.fuel.2014.03.001
    [27] WEI Z, GAO X, ZHANG D, DA J.Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state 13C NMR spectroscopy[J].Energy Fuels, 2005, 19(1):240-250. doi: 10.1021/ef0498566
    [28] LIU P, WANG L L, ZHOU Y, PAN T Y, LU X L, ZHANG D X.Effect of hydrothermal treatment on the structure and pyrolysis product distribution of Xiaolongtan lignite[J].Fuel, 2016, 164:110-118. doi: 10.1016/j.fuel.2015.09.092
    [29] WU D, LIU G, SUN R, FAN X.Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction[J].Energy Fuels, 2013, 27(10):5823-5830. doi: 10.1021/ef401276h
    [30] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华.应用红外光谱研究脱灰对伊敏褐煤结构的影响[J].燃料化学学报, 2014, 42(2):129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18345.shtml

    LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua.Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J].J Fuel Chem Technol, 2014, 42(2):129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18345.shtml
    [31] 刘鹏, 王岚岚, 张德祥, 鲁锡兰, 潘铁英.水热处理对褐煤提质及其热解产物分布的影响[J].洁净煤技术, 2015, 21(1):45-49. doi: 10.7464/ksct.2015.21.1.045

    LIU Peng, WANG lan-lan, ZHANG De-xiang, LU Xi-lan, PAN Tie-ying.Effects of hydrothermal treatment on lignite upgrading and distribution of pyrolysis products[J].Clean Coal Technol, 2015, 21(1):45-49. doi: 10.7464/ksct.2015.21.1.045
    [32] ZENG C, FAVAS G, WU H, CHAFFEE A L, HAYASHI J, LI C Z.Effects of pretreatment in steam on the pyrolysis behavior of Loy Yang brown coal[J].Energy Fuels, 2006, 20(1):281-286. doi: 10.1021/ef0502406
    [33] SISKINA M, KATRITZKY A R.A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water[J].J Anal Appl Pyrolysis, 2000, 54(1/2):193-214. http://www.baidu.com/link?url=OaGkor5fsIAa-FFwdUkTFjavSam8mH-DrTdIzWQr7jdFisRVmqrbPpFizsiIM1pcsxbzf1P9vAdxwysX0VL2PktHRIVGZcchkJviZKLvcWWZ66eCId4ODI707p7Jlr4AEnqn2Kaw822pV1Nchi1HO0WZd9lZt97pGYDYdDov7_utKWCmoabKaH-bwncoEfBYsKXHADxhSSNYHlRVdJ2YabC1g-ICN-H8xJTlWSsdzwdOJGCaUmSrJxLbRKM7us1_aBhyT7jkHxhG19E7p9hf2rzFiRBrzBRgis82Q7D35GV8XbF201pqpZLu5PkWfbn7YFF9gLWvUpzJuvFMMwfWBIfloJm6RHu5rMmkCVfqwypjg0ZypcNtW_GyCN2TKX4n&wd=&eqid=8acaa162000437310000000558bfdd25
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  204
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-14
  • 修回日期:  2015-11-01

目录

    /

    返回文章
    返回