-
摘要: 以先锋褐煤 (XF) 为原料, 在高压反应釜中考察了水热处理过程中褐煤的结构变化, 通过13C固体核磁共振 (NMR) 和傅里叶变换红外光谱进行了分析表征。结果表明, 在低于240℃的水热处理条件下, 煤有机分子结构中的弱化学键有一定断裂, 含氧官能团逐步减少; 水中氢以离子形态迁移至褐煤中, 处理后褐煤结构中甲基比例先增加后减少, 次甲基比例由原煤的4.80%增加至XF-240的13.16%;释放的气体中主要是CO2, 烃类气体组分随处理温度的升高略有增加。当水热处理温度高于240℃时, 褐煤中部分共价键开始断裂, 释放的烃类气体 (C1-4) 由240℃时的2.13%增加至300℃时的8.59%, 脂肪碳比例由XF-240的44.83%降低至XF-300的39.49%, 与氧连接的碳比例由XF-240的12.57%降低至XF-300的1.49%。水热处理对褐煤的脱氧提质效果显著, 300℃时氧含量降低约30%, 芳香碳比例增加至60.50%, 比原煤提高19%。Abstract: Xianfeng lignite (XF) was used as raw material to investigate its structural evolution during hydrothermal treatment in a 500 mL autoclave.The structure was characterized by solid state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR).The results show that the carbon contents increase and oxygen contents decrease after hydrotnermal treatment.The weak bonds in lignite are broken and the oxygen functional groups decrease gradually during hydrothermal treatment below 240℃.Hydrogen is donated from water to lignite through ionic pathway and transferred into lignite.The methyl carbon increases at 200℃ and then decreases.The methenyl carbon increases from 4.80% in XF to 13.16% in XF-240.The released gas is mainly CO2 during hydrothermal treatment.The hydrocarbon composition in released gas increases with the treated temperature.The covalent bonds are broken above 240℃.The hydrocarbon composition in released gas increases from 2.13% at 240℃ to 8.59% at 300℃.The aliphatic carbon in lignite deceases from 44.83% in XF-240 to 39.49% in XF-300.The oxygen-linked carbon in lignite decreases from 12.57% in XF-240 to 1.49% in XF-300.Hydrothermal treatment plays a role in deoxygenation and upgrading of raw lignite.The oxygen contents decrease by about 30% and the aromatic carbon increases to 60.50% at 300℃.
-
Key words:
- lignite /
- hydrothermal treatment /
- 13C-NMR /
- carbon structure /
- hydrogen transfer
-
表 1 褐煤干燥提质工艺参数
Table 1. Comparison of process parameters of lignite upgrading
Project Evaporation drying Non-evaporation drying WTA HPU D-K MTE HTD Temperature t/℃ 100-120 105-110 180-240 150-220 220-300 Operating pressure p/MPa 0.30-0.40 atmospheric 17 10 saturated vapor pressure Heavy water absorption yes no no no no Pore structure unchanged decrease decrease decrease decrease Oxygen content unchanged unchanged decrease decrease decrease Dewaterability t/h 110 110 1 25 - 表 2 先锋褐煤处理前后工业与元素分析
Table 2. Proximate and ultimate analyses of XF and treated XF
Sample Recovery a
w/%Proximate analyses w/% Ultimate analyses wdaf /% Ad Vdaf FCdaf C H N S O c XF - 8.42 52.58 47.42 71.26 5.06 2.25 0.94 20.49 XF-200 b 93.15 8.10 51.51 48.49 72.90 5.07 2.35 0.81 18.87 XF-220 91.89 8.53 49.12 50.88 72.24 4.91 2.42 0.86 19.56 XF-240 90.11 8.45 47.73 52.27 73.11 4.82 2.40 0.87 18.79 XF-260 88.32 8.25 47.85 52.15 75.33 4.65 2.39 0.76 16.87 XF-300 81.76 9.22 43.05 56.95 77.65 4.94 2.22 0.82 14.37 a: recovery is the mass ratio of treated lignite to raw lignite during hydrothermal treatment; b: “XF-200” indicates the IM was treated at 200℃for 30min; c: by difference 表 3 先锋褐煤13C-NMR中不同类型碳对应的化学位移
Table 3. Main assignments of chemical shift values for different structural carbons in solid-state 13C-NMR spectra of XF lignite
Assignment Location Chemical shift δ Character Aliphatic methyl R-CH3 14-22 fal3 Aromatic methyl 22-26 fala Methylene -CH2, 26-37 fal2 Quaternery sp3 C -CH--C 37-50 fal1, fal* Oxygen aliphatic carbon R-O-R, 50-95 falO Protonated aromatic carbon 95-124 faH Bridging ring junction aromatic carbon 124-137 faB Aliphatic substituted aromatic carbon 137-149 faS Oxygen aromatic carbon 149-164 faO Carboxyl, quinone and carbonyl carbon RCOOH, RCOR 164-220 faCC fal3: fraction of aliphatic methyl carbon; fala: fraction of aromatic methyl carbon; fal2: fraction of methylene carbon; fal1: fraction of methine carbon; fal*: fraction of carbon that is aliphatic and either quaternary, methyl, or mobile methylene; falO: fraction of total carbon associated with aliphatic ethers and alcohols; faH: protonated aromatic carbon; faB: bridgehead aromatic carbon; faS: alkyl substituted aromatic carbon; faO: oxygenated aromatic carbon; faCC: fraction of carbonyl, quinone and carboxyl carbons 表 4 XF褐煤含氧官能团在FT-IR光谱谱图中对应的位置
Table 4. Band assignments of oxygen functional groups for the FT-IR spectrum of XF lignite
Wavenumber σ/ cm-1 Assignment 1690-1720 C-O, ketone, aldehyde and -COOH 1600-1660 conjugated C=O 1450-1600 aromatic C=C 1375-1450 CH3-Ar, CH3 and CH2 1110-1300 C-O phenol 1000-1110 ash, alkyl ethers, Si-O and aryl ethers 表 5 先锋褐煤处理前后不同类型有机碳的分布
Table 5. Carbon structure distributions of the raw and treated XF
Sample Distribution /% fal3 fala fal2 fal1+fal* falO faH faB faO faS faCC XF 12.77 14.00 11.35 4.80 5.27 8.91 26.61 5.42 7.22 3.65 XF-200 16.95 15.38 7.81 5.14 1.49 11.80 25.61 7.12 5.27 3.43 XF-220 7.99 17.65 12.71 5.07 1.75 8.65 29.76 3.94 10.18 2.29 XF-240 8.11 17.13 6.43 13.16 0 5.39 31.82 5.38 8.29 4.28 XF-260 6.92 20.52 10.33 6.29 0 6.30 29.21 9.79 8.78 1.87 XF-300 10.34 16.05 9.31 3.79 0 3.86 19.36 35.79 1.49 0 fal3: fraction of aliphatic methyl carbon; fala: fraction of aromatic methyl carbon; fal2: fraction of methylene carbon; fal1: fraction of methine carbon; fal*: fraction of carbon that is aliphatic and either quaternary, methyl, or mobile methylene; falO: fraction of total carbon associated with aliphatic ethers and alcohols; faH: protonated aromatic carbon; faB: bridgehead aromatic carbon; faS: alkyl substituted aromatic carbon; faO: oxygenated aromatic carbon; faCC: fraction of carbonyl, quinone and carboxyl carbons 表 6 先锋褐煤FT-IR光谱谱图上含氧官能团区域的变化
Table 6. Oxygen functional groups band of the raw and treated XF for the FT-IR spectrum
Peak Position σ/cm-1 Assignment XF area percentage /% XF-240 area percentage /% 1 1035 alkyl ethers,Si-O 8.62 11.45 2 1100 aryl ethers 6.82 5.69 3 1167 C-O phenol 2.42 0.45 4 1207 C-O phenol 4.40 17.36 5 1269 C-O phenol 3.39 0.42 6 1310 C-O phenol 3.97 4.35 7 1376 CH3-Ar 5.92 2.20 8 1442 CH3, CH2 8.16 13.02 9 1502 aromatic C=C 2.12 2.37 10 1556 aromatic C=C 5.60 0.23 11 1588 aromatic C=C 16.54 8.63 12 1620 conjugated C=O 13.48 26.53 13 1656 conjugated C=O 0.61 0.68 14 1696 carboxyl acids 17.94 6.63 表 7 褐煤在水热处理过程中析出气体组分的变化
Table 7. Variation of gas composition during hydrothermal treatment
Temperature t/℃ Volume percentage φ/% H2 CO CO2 CH4 C2 C3 C4 200 3.41 2.96 92.83 0.80 - - - 220 2.11 2.46 94.07 1.00 0.20 0.14 0.02 240 1.17 2.69 94.02 1.58 0.31 0.20 0.03 260 5.91 2.75 88.61 1.97 0.45 0.27 0.04 300 3.39 2.01 86.02 6.11 1.48 0.83 0.16 *:the hydrothermal treatment temperature -
[1] BP Group.BP Statistical review of world energy (2014.6)[EB/OL].http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html. [2] 尚建选, 马宝岐, 张秋民, 沈和平.低阶煤分质转化多联产技术[M].北京:煤炭工业出版社, 2013.SHANG Jian-xuan, MA Bao-qi, ZHANG Qiu-min, SHEN He-ping.Low rank coal mass transfer and poly-generation technology[M].Beijing:Press of Coal Industry, 2013. [3] YU J, TAHMASEBI A, HAN Y, YIN F, LI X.A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization[J].Fuel Process Technol, 2013, 106:9-20. [4] KATAMBULA H, GUPTA R.Low-grade coals:A review of some prospective upgrading technologies[J].Energy Fuels, 2009, 23(7):3392-3405. doi: 10.1021/ef801140t [5] 周剑林, 王永刚, 黄鑫, 张书, 林雄超.低阶煤中含氧官能团分布的研究[J].燃料化学学报, 2013, 42(2):134-138. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18113.shtmlZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Shu, LIN Xiong-chao.Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J].J Fuel Chem Technol, 2013, 42(2):134-138. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18113.shtml [6] RWE Power.The WTA technology:An advanced method of processing and lignite[EB/OL].http://www.Rwe.com/web/cms/en/213182/rwe-power-ag/innobations/coal-innov-ation-centre/fluidized-bed-drying-with-internal-waste-heat-utilization-wta. [7] 朱书全.褐煤提质技术开发现状及分析[J].洁净煤技术, 2011, 17(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201101002.htmZHU Shu-quan.Development status and analysis of lignite quality improvement technol[J].Clean Coal Technol, 2011, 17(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201101002.htm [8] 戴和武, 谢可玉.褐煤利用技术[M].北京:煤炭工业出版社, 1999.DAI He-wu, XIE Ke-yu.Lignite utilization technology[M].Beijing:Press of Coal Industry, 1999. [9] BERGINS C.Kinetics and mechanism during mechanical/thermal dewatering of lignite[J].Fuel, 2003, 82(4):355-364. doi: 10.1016/S0016-2361(02)00310-1 [10] YU Y J, LIU J Z, CEN K F.Properties of coal water slurry prepared with the solid and liquid products of hydrothermal dewatering of brown coal[J].Ind Eng Chem Res, 2014, 53:4511-4517. doi: 10.1021/ie5000592 [11] BUTLER C J, GREEN A M, CHAFFEE A L.The fate of trace elements during MTE and HTD dewatering of Latrobe Valley brown coals[J].Coal Prep, 2007, 27(4):210-229. doi: 10.1080/07349340701640844 [12] MAPSTONE J O.Effect of hydrothermal pretreatment on coal structure and the mild gasification process[J].Energy Fuels, 1991, 5(5):695-700. doi: 10.1021/ef00029a011 [13] FAVAS G, JACKSON W R.Hydrothermal dewatering of lower rank coals.1.Effects of process conditions on the properties of dried product[J].Fuel, 2003, 82(1):53-57. doi: 10.1016/S0016-2361(02)00192-8 [14] FAVAS G, JACKSON W R.Hydrothermal dewatering of lower rank coals.2.Effects of coal characteristics for a range of Australian and international coals[J].Fuel, 2003, 82(1):59-69. doi: 10.1016/S0016-2361(02)00191-6 [15] FAVAS G, JACKSON W R, MARSHALL M.Hydrothermal dewatering of lower rank coals.3.High-concentration slurries from hydrothermally treated lower rank coals[J].Fuel, 2003, 82(1):71-79. doi: 10.1016/S0016-2361(02)00190-4 [16] SAKAGUCHI M, LAURSEN K, NAKAGAWA H, MIURA K.Hydrothermal upgrading of Loy Yang Brown coal-Effect of upgrading conditions on the characteristics of the products[J].Fuel Process Technol, 2008, 89:391-396. doi: 10.1016/j.fuproc.2007.11.008 [17] 常鸿雁, 徐文娟, 张德祥, 高晋生.加压水蒸气下年轻煤脱氧改质的研究[J].煤炭转化, 2005, 28(1):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200501005.htmCHANG Hong-yan, XU Wen-juan, ZHANG De-xiang, GAO Jin-sheng.Study on the deoxy-modification of low rank coals under pressurized vapour conditions[J].Coal Convers, 2005, 28(1):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200501005.htm [18] 刘红缨, 郜翔, 张明阳, 朱彦敏, 朱书全.水热法改性褐煤及含氧官能团与水相互作用的研究[J].燃料化学学报, 2014, 42(3):284-289. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18368.shtmlLIU Hong-ying, GAO Xiang, ZHANG Ming-yang, ZHU Yan-ming, ZHU Shu-quan.Study on lignite modified by hydrothermal and the interaction between the oxygen containing functional groups and water[J].J Fuel Chem Technol, 2014, 42(3):284-289. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18368.shtml [19] 黄鑫, 张书, 林雄超, 王永刚, 徐敏.低温加压热解脱氧对胜利褐煤亲水性的影响[J].燃料化学学报, 2013, 41(12):1409-1414. doi: 10.1016/S1872-5813(14)60005-0HUANG Xin, ZHANG Shu, LIN Xiong-chao, WANG Yong-gang, XU Min.Deoxygenation effect on hydrophilicity changes of Shengli lignite during pressurized pyrolysis at low temperature[J].J Fuel Chem Technol, 2013, 41(12):1409-1414. doi: 10.1016/S1872-5813(14)60005-0 [20] INOUE T, OKUMA O, MASUDA K, YASUMURO M, MIURA K.Hydrothermal treatment of brown coal to improve the space time yield of a direct liquefaction reactor[J].Energy Fuels, 2012, 26(4):2198-2203. doi: 10.1021/ef300095s [21] INOUE T, OKUMA O, MASUDA K, YASUMURO M, MIURA K.Direct liquefaction of brown coal using a 0.1 ton/day process development unit:Effect of hydrothermal treatment on scale deposition and liquefaction yield[J].Energy Fuels, 2012, 26(9):5821-5827. doi: 10.1021/ef300999r [22] FU J, WANG J.Enhanced slurryability and rheological behaviors of two low-rank coals by thermal and hydrothermal pretreatments[J].Powder Technol, 2014, 266:183-190. doi: 10.1016/j.powtec.2014.06.034 [23] YU Y J, LIU J Z, WANG R, ZHOU J, CEN K F.Effect of hydrothermal dewatering on the slurryability of brown coals[J].Energ Convers Manage, 2012, 57:8-12. doi: 10.1016/j.enconman.2011.11.016 [24] 葛立超, 张彦威, 应芝, 王智化, 周俊虎, 岑可法.水热处理对我国典型褐煤气化特性的影响[J].中国电机工程学报, 2013, 33(32):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201332004.htmGE Li-chao, ZHANG Yan-wei, YING Zhi, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa.Influence of the hydrothermal dewatering on the gasification characteristics of typical chinese lignite[J].Proc CSEE, 2013, 33(32):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201332004.htm [25] 相建华, 曾凡桂, 李彬, 张莉, 李美芬, 梁虎珍.成庄无烟煤大分子结构模型及其分子模拟[J].燃料化学学报, 2013, 41(4):391-399. doi: 10.1016/S1872-5813(13)60022-5XIANG Jian-hua, ZEGN Fan-gui, LI Bin, ZHAGN Li, LI Mei-fen, LIANG Hu-zhen.Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J].J Fuel Chem Technol, 2013, 41(4):391-399. doi: 10.1016/S1872-5813(13)60022-5 [26] YAN J, BAI Z, BAI J, GUO Z, LI W.Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal[J].Fuel, 2014, 128:39-45. doi: 10.1016/j.fuel.2014.03.001 [27] WEI Z, GAO X, ZHANG D, DA J.Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state 13C NMR spectroscopy[J].Energy Fuels, 2005, 19(1):240-250. doi: 10.1021/ef0498566 [28] LIU P, WANG L L, ZHOU Y, PAN T Y, LU X L, ZHANG D X.Effect of hydrothermal treatment on the structure and pyrolysis product distribution of Xiaolongtan lignite[J].Fuel, 2016, 164:110-118. doi: 10.1016/j.fuel.2015.09.092 [29] WU D, LIU G, SUN R, FAN X.Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction[J].Energy Fuels, 2013, 27(10):5823-5830. doi: 10.1021/ef401276h [30] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华.应用红外光谱研究脱灰对伊敏褐煤结构的影响[J].燃料化学学报, 2014, 42(2):129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18345.shtmlLIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua.Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J].J Fuel Chem Technol, 2014, 42(2):129-137. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18345.shtml [31] 刘鹏, 王岚岚, 张德祥, 鲁锡兰, 潘铁英.水热处理对褐煤提质及其热解产物分布的影响[J].洁净煤技术, 2015, 21(1):45-49. doi: 10.7464/ksct.2015.21.1.045LIU Peng, WANG lan-lan, ZHANG De-xiang, LU Xi-lan, PAN Tie-ying.Effects of hydrothermal treatment on lignite upgrading and distribution of pyrolysis products[J].Clean Coal Technol, 2015, 21(1):45-49. doi: 10.7464/ksct.2015.21.1.045 [32] ZENG C, FAVAS G, WU H, CHAFFEE A L, HAYASHI J, LI C Z.Effects of pretreatment in steam on the pyrolysis behavior of Loy Yang brown coal[J].Energy Fuels, 2006, 20(1):281-286. doi: 10.1021/ef0502406 [33] SISKINA M, KATRITZKY A R.A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water[J].J Anal Appl Pyrolysis, 2000, 54(1/2):193-214. http://www.baidu.com/link?url=OaGkor5fsIAa-FFwdUkTFjavSam8mH-DrTdIzWQr7jdFisRVmqrbPpFizsiIM1pcsxbzf1P9vAdxwysX0VL2PktHRIVGZcchkJviZKLvcWWZ66eCId4ODI707p7Jlr4AEnqn2Kaw822pV1Nchi1HO0WZd9lZt97pGYDYdDov7_utKWCmoabKaH-bwncoEfBYsKXHADxhSSNYHlRVdJ2YabC1g-ICN-H8xJTlWSsdzwdOJGCaUmSrJxLbRKM7us1_aBhyT7jkHxhG19E7p9hf2rzFiRBrzBRgis82Q7D35GV8XbF201pqpZLu5PkWfbn7YFF9gLWvUpzJuvFMMwfWBIfloJm6RHu5rMmkCVfqwypjg0ZypcNtW_GyCN2TKX4n&wd=&eqid=8acaa162000437310000000558bfdd25