留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives

Wang Bo Hao Peng Ma Xiangtao Tian Kuo

轴压筒壳屈曲载荷折减因子评估方法的最新进展[J]. 机械工程学报, 2022, 38(1): 421440. doi: 10.1007/s10409-021-09035-x
引用本文: 轴压筒壳屈曲载荷折减因子评估方法的最新进展[J]. 机械工程学报, 2022, 38(1): 421440. doi: 10.1007/s10409-021-09035-x
B. Wang, P. Hao, X. Ma, and K. Tian,Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09035-x'>https://doi.org/10.1007/s10409-021-09035-x
Citation: B. Wang, P. Hao, X. Ma, and K. Tian,Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09035-x">https://doi.org/10.1007/s10409-021-09035-x

Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives

doi: 10.1007/s10409-021-09035-x
Funds: 

the National Natural Science Foundation of China Grant

the National Defense Basic Research Program Grant

the Project supported by Liaoning Provincial Natural Science Foundation Grant

Liaoning Revitalization Talents Program Grant

the Fundamental Research Funds for the Central Universities Grant

More Information
    Corresponding author: Corresponding author. E-mail address: wangbo@dlut.edu.cn (Bo Wang)
  • 摘要: 薄壁筒壳结构作为航空航天的主承力构件, 在轴压载荷下易发生屈曲失稳, 并且对几何缺陷表现为强敏感性. 尽管经过数十年的研究, 精准地预测几何缺陷影响下轴压筒壳的折减因子仍是一个非常具有挑战的科学难题. 直至现在, NASA 20世纪提出航天薄壁轴压筒壳折减因子下限设计准则SP-8007仍被广泛使用, 随着制造工艺的进步和发展, SP-8007已经被证明过于保守. 近年来, 学者们基于数值方法和实验技术发展了一系列折减因子的确定方法, 本文对这些方法进行了全面综述, 其中作者提出的多点最不利扰动载荷法(WMPLA)是最具代表性的方法之一, 其以合理的方式有效地降低了传统折减因子预测方法的保守程度. 另外, 本文还基于搜集的1990~2020年轴压筒壳屈曲实验数据, 对原始的折减因子下限准则曲线进行了改进. 可以发现, 相比于原始的SP-8007准则, 新折减因子准则曲线整体上提升了0.1~0.3, 并且使用WMPLA预测的折减因子非常接近于新准则曲线的边界. 本文的研究工作有助于新一代轴压筒壳设计准则的建立, 并可服务于大直径航天运载器主承力薄壁结构的轻量化设计.

     

  • 1.  Schematic diagrams of buckling shells. a The CZ-5 launch vehicle; b buckling of stringer stiffened cylindrical shell; c buckling of grid stiffened cylindrical shell; d buckling of unstiffened cylindrical shell.

    2.  Curve of lower-bound KDFs in NASA SP-8007 [6].

    3.  Schematic diagrams of the energy barrier and non-destructive experimental technique for cylindrical shells proposed in Ref. [52].

    4.  DIC equipment and obtained the initial measured geometric imperfections before tests [61,62].

    5.  Imperfection sensitivity curve of SPLA [70].

    6.  Flowchart of Worst Multiple Perturbation Load Approach (WMPLA).

    7.  Applications of the WMPLA. a Cylindrical shell [21]; b equivalent model of stiffened cylindrical shell [78]; c composite cylindrical shell with delamination imperfections [58]; d stiffened conical shells [80]; e stiffened shells with weld lands [79].

    8.  Loading system for axial compression. a Schematic diagram of 3D model; b photograph of the real device [61].

    9.  Loading system for axial compression combined with external pressure. a Schematic diagram of 3D model; b photograph of the real device.

    10.  Measurement system of buckling experiment [61].

    11.  KDFs obtained by the experimental test of axially compressed cylindrical shells from 1957 to 2020 compared with NASA SP-8007 and DLR threshold. a KDFs of cylindrical shell tests from 1990 to 2020; b KDFs of cylindrical shell tests from 1968 to 2020 combined with data in NASA SP-8007.

    Table 1.   Comparison of different KDF determination methods and test results [81]

    MethodNASA SP-8007Eigenmode imperfection methodSPLAWMPLATest
    KDF0.3860.5050.6750.5660.569-0.897
    下载: 导出CSV

    Table 2.   Summary of experimental data of axially compressed cylindrical shells

    No.Ref.YearMaterialStructural typeR (mm)R/tL (mm)Number of specimensBuckling load (kN)KDFNote
    1Harris [107]19572S-H18 aluminumCylindrical shell222175054620.28-0.29
    Hard stainless steel100640.76-0.89
    Hard stainless steel273480.14-0.23
    2Ricardo [108]1967MylarCylindrical shell102400279.490.75-0.820.60-0.66
    3Muggeridge [69]1969Photo-elastic plasticCylindrical shell67/100110-280188-282110.57-0.92
    4Caswell [109]1971EpoxyCylindrical shell100100-198259-279140.53-0.76
    5Hutchinson [110]1971EpoxyCylindrical shell100175-21927970.35-0.92
    6Carri [111]1973Boron-EpoxyCylindrical shell46.3519.90464.32713.82-753.920.75-0.79[45/−45/05/90/45/−45/90/05/45/−45]
    Boron-Epoxy46.620.00426.71512.440.83[45/−45/04/90/90/04/45/–45]
    Boron-Epoxy46.620.00426.71592.240.97[45/−45/04/90/90/04/45/−45]
    Ti-6AL-4V/Boron-Epoxy48.918.8138111116.150.73[45/−45/013/0.026Ti]
    Ti-6AL-4V/Boron-Epoxy48.526.083811679.860.79[45/−45/07/0.026Ti]
    Ti-6AL-4V/Boron-Epoxy48.2533.513812442.66-472.390.76-0.81[45/−45/04/0.026Ti]
    7Wilkins [112]1975Graphite-Epoxy Narmco5505/T300Cylindrical shell190.5354381156.810.68[45/−45]s
    8Herakovich [113]1978Boron-EpoxyCylindrical shell75.3681355.6155.6[0/0/0/0/0/0/0/0]
    Boron-Epoxy76.25139508.8125.8[82.5/30/20/−82.5]
    Boron-Epoxy76.5869507.2161.6[−45/−45/45/45]s
    Graphite-Epoxy76.38132508.8120.1[−82.5/30/20/−82.5]
    Graphite-Epoxy75.87115333.4118.24[−45/45]s
    Boron-Epoxy75.59745081136.78[0/45/−45/90]s
    Graphite-Epoxy75.5960508154.27[−45/−45/45/45]s
    Graphite-Epoxy75.5474428.61100.08[0/45/−45/90]s
    Graphite-Epoxy75.5473509.6185.63[0/45/−45/90]s
    9Arbocz [65]1979CopperCylindrical shell101.6844-915196.85-203.2073.04-3.85
    NickelCylindrical shell101.61030-1042196.8532.68-3.91
    BrassCylindrical shell101.6386-681140.97-196.8547.18-16.66
    Welded stainless steelCylindrical shell117.86-118.49258-261148.59641.70-56.05
    AluminumStringer stiffened cylindrical shell101.6362-517139.7314.29-22.36
    AluminumRing stiffened cylindrical shell101.6384-492133.35-146.30119.74-24.95
    10Uemura [114]1982T300A/EpoxyCylindrical shell100100300282.51-84.36[0/90/0/90]s
    100300264.65-65.89[0/0/0/0/90/90/90/90]
    200300112.16[−20/−20/20/20]
    100300255.29-56.83[−20/−20/−20/−20]as
    100300182.51[−20/20/−20/20]as
    200300113.24[−45/45/45/−45]
    200300113.24[−45/−45/45/45]
    100300149.01[−45/−45/−45/−45]as
    100300256.83-56.83[−45/45/−45/45]as
    100300474.51-79.43[−70/70/−70/70]s
    200300118.63[−70/70/−70/70]
    100300258.80-58.80[−70/−70/−70/−70]as
    100300278.2-80.66[−70/70/−70/70]as
    11Hirano [115]1983T300/S305Cylindrical shell100122.85300361.8-63.70.75-0.77[20/−20/0/0/40/−40]
    343.9-51.30.69-0.81[20/−20/40/−40/0/0]
    332.7-34.80.78-0.83[40/−40/20/−20/0/0]
    12Tennyson [116]19833M SP288 T300Cylindrical shell83.974.91282.71129.83[0/45/90/−45/0/45/90/−45]
    83.8284.67287.81124.040.92[0/45/−45/90/90/−45/45/0]
    83.8583.85284.7189.351.03[0/0/45/45/−45/−45/90/90]
    83.7990.10274.1197.09[0/45/−45/−45/45/0/0/0]
    83.8289.17269.2196.040.90[0/0/45/45/−45/−45/0/0]
    83.7990.10282.2160.71[45/−45/−45/45/0/0/0/0]
    83.57181.67282.7115.220.90[0/90/90/0]
    83.57194.35267.7117.181.17[90/0/0/90]
    13Kobayashi [117]1984CFRPCylindrical shell100238.1200113.270.956[20/−20/90]
    173.01127.340.97[0/45/−45/90]
    111.23188.390.756[30/−30/−30/30/90/90]
    98.33198.190.904[0/60/−60/−60/60/0]
    14Foster [118]1987EpoxyCylindrical shell50255-39849-5840.15-0.380.84-0.99No imposed imperfections
    288-33462-7340.12-0.240.52-0.83With imposed imperfections
    15Sun [119]1987AS/3501-6Cylindrical shell83.31166.62152.4130.100.86[26/−42/76/−3]
    166.62118.640.86[0/90/90/0]
    167.34121.840.83[−59/5/51/−59]
    169.07118.370.92[90/0/0/90]
    166.62118.500.97[−83/37/15/−86]
    16Dancy [66]1988Low carbon steelCylindrical shell33330100333.05-4.68
    17Geier [120]1991CFRPCylindrical shell2502005102221.48-227.760.80-0.82[60/−60/0/0/68/−68/52/−52/37/−37]
    200290.12-93.460.92-0.95[51/−51/45/−45/37/−37/19/−19/0/0]
    2002227.76-287.230.83-1.02[30/−30/90/90/22/−22/38/−38/53/−53]
    400168.921.03[51/−51/90/−90/40/−40]
    18Giavotto [121]1991Kevlar fabricCylindrical shell350336.54550232.480.88[0/90/90/0]
    31.790.84[45/−45/−45/45]
    19Krishnakumar [122]1991Araldite LC 261/hardener LC 249Cylindrical shell77197.44-596.969.3-192.5360.66-0.98
    20Waters [123]1996AS4/3502Cylindrical shell203.2201.19355.61133.590.74[45/0/90]s
    203.4100.69355.61328.890.74[45/−45/−45/45]2s
    203.3101.14355.61656.260.86[45/0/90]2s
    203104.10355.61557.630.91[45/904/−45/45]s
    203.4100.69355.61408.660.59[45/04/−45/45]s
    21Schneider [124]1996Polycarbonate plasticCylindrical shell19.115.0438.1313.41-13.61Perfect
    25.26-7.37Axisymmetric imperfectionwo/t = 0.3
    22Bisagni [125]1999CFRP fabricCFRP unidirectionalCylindrical shell350265.155404151.62-172.880.63-0.72[0/45/−45/0]
    265.154151.62-172.880.85-0.99[45/−45]s
    291.67292.86-96.270.53-0.55[45/−45]2s
    291.67292.05-99.540.54-0.59[90/0]2s
    233.332185.94-196.230.64-0.68[90/30/−30/90]
    233.332155.35-159.060.98-0.99[45/−45]
    23Kim [126]1999IM7/997-2Isogrid stiffened cylindrical shell624.8368.31117.88
    24Meyer-Piening [127]2001CFRPCylindrical shell2502005102208-212.6[60/−60/0/0/68/−68/52/−52/37/−37]
    3213-222[37/−37/52/−52/68/−68/0/0/60/−60]
    8206.6-228.2[53/−53/8/−8/90/−90/68/−68/38/−38]
    12186-249.7[53/−53/38/−38/22/−22/90/−90/30/−30]
    488-92.4[0/0/19/−19/37/−37/45/−45/51/−51]
    6156-172.8[51/−51/45/−45/37/−37/19/−19/0/0]
    25Bisagni [128]2003CFRP fabricCFRP unidirectionalCylindrical shell350292540174.93[45/−45]2s
    292183.66[0/45/−45/0]2s
    265197.95[45/-45]s
    2651140.2[0/45/−45/0]
    26Hilburger [129]2006AS4/3502Cylindrical shell203.2200406.43123.60.929[−45/45/0/0]s
    1420.879[−45/45/90/90]s
    151.60.821[−45/45/0/90]s
    27Bisagni [91]2006CFRPStringer stiffened cylindrical shell3505402360.2-380.32.78-3.68[45/−45]
    28Hilburger [130]2008Al-LiOrthogrid stiffened cylindrical shell1219.21981.213065.71
    29Fan [94]2009T700/bisphenol epoxyCFRC sandwich cylindrical shell with kagome cores312.53751524.6
    30Degenhardt [131]2010IM7/8552Cylindrical shell2505005401021.32-25.690.68-0.82[24/−24/41/−41]
    31Haynie [132]2012Aluminum alloy 2024Cylindrical shell228.6225787.43168-169
    32Priyadarsini [133]2012CFRPCylindrical shell150.5150.5400477.1[0/45/−45/0]
    98.6[0/45/−45/0]
    99.8[0/45/−45/0]
    98.2[0/45/−45/0]
    33Chen [95]2013T700/EpoxyCarbon fiber reinforced lattice-core sandwich cylindrical shell60030160011200
    34Bisagni [134]2015IM7/8552Cylindrical shell250500520213.01-15.34[45/−45/−45/45]
    212.75-14.33[45/−45/−45/46]
    214.41-15.79[45/−45/−45/47]
    35Schillo [135]2015AS7/8552Cylindrical shell115147215255.4-62.1[90/30/−30]s
    36Kalnins [136]2015IM7/8552Cylindrical shell251.13479.99500125.380.65[24/−24/41/−41]
    251.8481.27500125.640.66[24/−24/41/−41]
    150.4574.9230011.60.37[0/45]
    150.4574.9230012.440.56[0/45]
    150.52383.5930016.220.46[0/60/−60]
    150.61383.8230016.340.46[0/60/−60]
    150.22382.8230017.280.53[0/60/−60]
    150.66383.9430018.710.50[0/45/−45]
    150.76384.230018.50.49[0/45/−45]
    150.73384.1230019.630.56[0/45/−45]
    151.32289.22300128.960.73[24/−24/41/−41]
    150.76288.15300126.850.68[24/−24/41/−41]
    151.16288.91300121.10.53[24/−24/41/−41]
    151.01288.63300125.470.65[24/−24/41/−41]
    37Takano [137]2016TR/HSXCylindrical shell68.00139.34136113.1970.6[−70/70/0/0/70/−70]
    71.75147.03287111.870.54[−70/70/0/0/70/−70]
    72.67148.91436111.5370.525[−70/70/0/0/70/−70]
    68.00194.84136112.9970.615[−70/70/0/0/70/−70]
    73.83211.56443112.6470.578[−70/70/0/0/70/−70]
    74.00422.8614811.8060.877[−70/0/70]
    73.83421.944311.4370.697[−70/0/70]
    68.00139.34136112.6650.576[−70/70/0/0/70/−70]
    72.67148.9143618.7380.397[−70/70/0/0/70/−70]
    68.00194.84136110.3660.491[−70/70/0/0/70/−70]
    72.67208.2143619.8750.451[−70/70/0/0/70/−70]
    68.00586.2113610.5830.605[−50/0/50]
    72.67626.4443610.4640.492[−50/0/50]
    38Wang [61]2016Aluminum alloyStiffened cylindrical shell22502200131510.62
    39Li [96]2016T700/EpoxyCarbon fiber reinforced lattice truss sandwich cylindrical shell312.53751328.03
    40Wang [62,81]2017Aluminum alloyCylindrical shell5003336005335.13-519.390.57-0.89
    41Khakimova [92]2017CFRPCylindrical shell400533800258.3-63.30.65-0.71[34/−34/0/0/53/−53]
    42Rudd [103]2018Al 2219Seamless orthogrid stiffened cylindrical shell1225.6228613302.79
    43Hilburger [102]2018Al-LiStiffened cylindrical shell1219.21981.212878
    44Wu [138]2018T700/EpoxyHierarchical orthogrid stiffened cylindrical shell312.5-315590-5962132.74-359.24
    45Li [97]2018T700/EpoxyHierarchical isogrid stiffened cylindrical shell312.54311741.4[0/60/−60]s
    46Li [98]2020T700/EpoxyFolded lattice-core sandwich cylindrical shell312.53751293.4
    下载: 导出CSV
  • [1] R. Lorenz, Achsensymmetrische verzerrungen in dünnwandigen hohlzylindern (in German), Z. Vereines Dtsch Ingen. 52, 1706 (1908)
    [2] S. P. Timoshenko, and J. M. Gere, Theory of Elastic Stability, 2nd ed (Dover Publications, New York, 2009)
    [3] L. H. Donnell, and C. C. Wan, Effect of imperfections on buckling of thin cylinders and columns under axial compression, J. Appl. Mech. 17, 73 (1950).
    [4] T. von Kármán, and H. Tsien, The Buckling of Thin Cylindrical Shells under Axial Compression (Elsevier, 2012), pp. 165-181
    [5] W. T. Koiter, On the Stability of Elastic Equilibrium, Vol. 833 (National Aeronautics and Space Administration, 1967)
    [6] J. P. Peterson, P. Seide, V. I. Weingarten, J. P. Peterson, P. Seide, and V. I. Weingarten, Buckling of thin-walled circular cylinders, NASA SP-8007 (NASA Special Publication, 1968)
    [7] B. O. Almroth, A. B. Burns, and E. V. Pittner, Design criteria for axially loaded cylindrical shells, J. Spacecraft Rockets 7, 714 (1971).
    [8] A. Takano, Statistical knockdown factors of buckling anisotropic cylinders under axial compression, J. Appl. Mech. 79, 051004 (2012).
    [9] J. M. Rotter, and H. Schmidt, Buckling of Steel Shells: European Design Recommendations (European Convention for Constructional Steelwork (ECCS), 2014)
    [10] H. N. R. Wagner, C. Hühne, S. Niemann, K. Tian, B. Wang, and P. Hao, Robust knockdown factors for the design of cylindrical shells under axial compression: analysis and modeling of stiffened and unstiffened cylinders, Thin-Walled Struct. 127, 629 (2018).
    [11] H. N. R. Wagner, C. Hühne, and S. Niemann, Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells—development and validation, Compos. Struct. 173, 281 (2017).
    [12] Z. R. Tahir, and P. Mandal, Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression, Eng. Struct. 152, 843 (2017).
    [13] M. Hilburger, Developing the next generation shell buckling design factors and technologies, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Honolulu, 2013)
    [14] R. Degenhardt, New robust design guideline for imperfection sensitive composite launcher structures—the DESICOS project, in 3rd International Conference on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures (2015)
    [15] B. Wang, P. Hao, K. Du, and K. Tian, Lightweight design theory and method of grid stiffened cylinder shell allowing for imperfection sensitivity (in Chinese), China Basic Sci. 20, 28 (2018)
    [16] J. G. Teng, Buckling of thin shells: recent advances and trends, Appl. Mech. Rev. 49, 263 (1996).
    [17] J. Arbocz, and J. H. Starnes Jr., Future directions and challenges in shell stability analysis, Thin-Walled Struct. 40, 729 (2002).
    [18] H. Schmidt, Stability of steel shell structures, J. Constr. Steel Res. 55, 159 (2000).
    [19] Q. Du, Advance and application for the morden nonlinear stability theory of the thin shell (in Chinese), Struct. Environ. Eng. 29, 41 (2002)
    [20] Y. Zhao, and J. Teng, Stability design of axially compressed thin steel cylindrical shells (in Chinese), Eng. Mech. 20, 116 (2003)
    [21] B. L. O. Edlund, Buckling of metallic shells: buckling and postbuckling behaviour of isotropic shells, especially cylinders, Struct. Control Health Monit. 14, 693 (2007).
    [22] X. Bai, and R. Guo, Main branches of recent elastic stability theory (in Chinese), J. Nav. Univ. Eng. 16, 44 (2004)
    [23] P. Qiao, Y. Wang, and L. Lu, Advances in stability study of cylindrical shells (in Chinese), Chin. Q. Mech. 39, 223 (2018)
    [24] F. S. Liguori, G. Zucco, A. Madeo, D. Magisano, L. Leonetti, G. Garcea, and P. M. Weaver, Postbuckling optimisation of a variable angle tow composite wingbox using a multi-modal Koiter approach, Thin-Walled Struct. 138, 183 (2019).
    [25] A. Madeo, R. M. J. Groh, G. Zucco, P. M. Weaver, G. Zagari, and R. Zinno, Post-buckling analysis of variable-angle tow composite plates using Koiter’s approach and the finite element method, Thin-Walled Struct. 110, 1 (2017).
    [26] G. Garcea, F. S. Liguori, L. Leonetti, D. Magisano, and A. Madeo, Accurate and efficient a posteriori, Int. J. Numer. Meth. Engng. 112, 1154 (2017).
    [27] R. J. Mania, A. Madeo, G. Zucco, and T. Kubiak, Imperfection sensitivity of post-buckling of FML channel section column, Thin-Walled Struct. 114, 32 (2017).
    [28] F. S. Liguori, A. Madeo, D. Magisano, L. Leonetti, and G. Garcea, Post-buckling optimisation strategy of imperfection sensitive composite shells using Koiter method and Monte Carlo simulation, Compos. Struct. 192, 654 (2018).
    [29] K. Liang, M. Ruess, and M. Abdalla, An eigenanalysis-based bifurcation indicator proposed in the framework of a reduced-order modeling technique for non-linear structural analysis, Int. J. Non-Linear Mech. 81, 129 (2016).
    [30] K. Liang, C. Yang, and Q. Sun, A smeared stiffener based reduced-order modelling method for buckling analysis of isogrid-stiffened cylinder, Appl. Math. Model. 77, 756 (2020).
    [31] J. L. Sanders Jr., Nonlinear theories for thin shells, Q. Appl. Math. 21, 21 (1963)
    [32] W. T. Koiter, General equations of elastic stability for thin shells, in Symposium on the Theory of Shells to Honor Lloyd Hamilton Donnett (1967), pp. 187-230
    [33] B. Budiansky, Notes on nonlinear shell theory, J. Appl. Mech. 35, 393 (1968).
    [34] M. N. Isabel Figueiredo, Local existence and regularity of the solution of the nonlinear thin shell model of Donnell-Mushtari-Vlasov, Appl. Anal. 36, 221 (1990).
    [35] C. P. Ellinas, and J. G. A. Croll, Elastic-plastic buckling design of cylindrical shells subject to combined axial compression and pressure loading, Int. J. Solids Struct. 22, 1007 (1986).
    [36] S. Yamada, and J. G. A. Croll, Contributions to understanding the behavior of axially compressed cylinders, J. Appl. Mech. 66, 299 (1999).
    [37] J. G. A. Croll, and C. P. Ellinas, Reduced stiffness axial load buckling of cylinders, Int. J. Solids Struct. 19, 461 (1983).
    [38] E. M. Sosa, L. A. Godoy, and J. G. A. Croll, Computation of lower-bound elastic buckling loads using general-purpose finite element codes, Comput. Struct. 84, 1934 (2006).
    [39] S. Yamada, and J. G. A. Croll, Buckling behavior of pressure loaded cylindrical panels, J. Eng. Mech. 115, 327 (1989).
    [40] J. G. A. Croll, Towards a rationally based elastic-plastic shell buckling design methodology, Thin-Walled Struct. 23, 67 (1995).
    [41] G. M. Zintilis, and J. G. A. Croll, Pressure buckling of end supported shells of revolution, Eng. Struct. 4, 222 (1982).
    [42] S. Yamada, and J. G. A. Croll, Buckling and post-buckling characteristics of pressure-loaded cylinders, J. Appl. Mech. 60, 290 (1993).
    [43] J. G. A. Croll, and R. C. Batista, Explicit lower bounds for the buckling of axially loaded cylinders, Int. J. Mech. Sci. 23, 331 (1981).
    [44] X. Ma, P. Hao, F. Wang, and B. Wang, Incomplete reduced stiffness method for imperfection sensitivity of cylindrical shells, Thin-Walled Struct. 157, 107148 (2020).
    [45] E. Chater, J. W. Hutchinson, K. W. Neale, Buckle propagation on a beam on a nonlinear elastic foundation, in Collapse: The Buckling of Structures in Theory and Practice, edited by J. M. T. Thompson, and J. W. Hunt (Cambridge University Press, Cambridge, 1983), pp. 31-41
    [46] G. W. Hunt, Reflections and symmetries in space and time, IMA J. Appl. Math. 76, 2 (2011).
    [47] G. W. Hunt, G. J. Lord, and M. A. Peletier, Cylindrical shell buckling: a characterization of localization and periodicity, Discret. Contin. Dyn. Syst.-B 3, 505 (2003).
    [48] G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. Ahmer Wadee, C. J. Budd, and G. J. Lord, Cellular buckling in long structures, Nonlinear Dyn. 21, 3 (2000).
    [49] G. W. Hunt, and E. L. Neto, Maxwell critical loads for axially loaded cylindrical shells, J. Appl. Mech. 60, 702 (1993).
    [50] G. W. Hunt, H. M. Bolt, and J. M. T. Thompson, Structural localization phenomena and the dynamical phase-space analogy, Proc. R. Soc. Lond. A 425, 245 (1989).
    [51] C. J. Budd, G. W. Hunt, and R. Kuske, Asymptotics of cellular buckling close to the Maxwell load, Proc. R. Soc. Lond. A 457, 2935 (2001).
    [52] J. M. T. Thompson, and J. Sieber, Shock-sensitivity in shell-like structures: with simulations of spherical shell buckling, Int. J. Bifurcat. Chaos 26, 1630003 (2016).
    [53] J. M. T. Thompson, and G. H. M. van der Heijden, Quantified “shock-sensitivity” above the Maxwell load, Int. J. Bifurcat. Chaos 24, 1430009 (2014).
    [54] J. W. Hutchinson, and J. M. T. Thompson, Imperfections and energy barriers in shell buckling, Int. J. Solids Struct. 148-149, 157 (2018).
    [55] J. W. Hutchinson, and J. M. T. Thompson, Nonlinear buckling interaction for spherical shells subject to pressure and probing forces, J. Appl. Mech. 84, 61001 (2017).
    [56] W. T. Koiter, The stability of elastic equilibrium. Stab Elastic Equilib (1970)
    [57] H. N. R. Wagner, C. Hühne, K. Rohwer, S. Niemann, and M. Wiedemann, Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells, Compos. Struct. 160, 1095 (2017).
    [58] B. Wang, X. Ma, P. Hao, Y. Sun, K. Tian, G. Li, K. Zhang, L. Jiang, and J. Guo, Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections, Compos. Part B-Eng. 163, 314 (2019).
    [59] Y. Chen, Z. X. Zhu, Y. Q. Li, and T. Tanh, On ultimate bearing capability of sandwich composite cylinders for underwater vehicle under hydrostatic external pressure, J. Nav. Univ. Eng. 2, 83 (2018)
    [60] M. W. Hilburger, and J. H. Starnes Jr., Effects of imperfections of the buckling response of composite shells, Thin-Walled Struct. 42, 369 (2004).
    [61] B. Wang, K. Du, P. Hao, C. Zhou, K. Tian, S. Xu, Y. Ma, and X. Zhang, Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression, Thin-Walled Struct. 109, 13 (2016).
    [62] B. Wang, S. Zhu, P. Hao, X. Bi, K. Du, B. Chen, X. Ma, and Y. J. Chao, Buckling of quasi-perfect cylindrical shell under axial compression: a combined experimental and numerical investigation, Int. J. Solids Struct. 130-131, 232 (2018).
    [63] J. Arbocz, The Imperfection Data Bank, a Mean to Obtain Realistic Buckling Loads (Springer, Berlin, Heidelberg, 1982)
    [64] Z. Chen, H. Fan, J. Cheng, P. Jiao, F. Xu, and C. Zheng, Buckling of cylindrical shells with measured settlement under axial compression, Thin-Walled Struct. 123, 351 (2018).
    [65] J. Arbocz, and H. Abramovich, The initial imperfection data bank at the Delft University of Technology: Part I, Technical Report LR-290 (Delft University of Technology, 1979)
    [66] R. Dancy, and D. Jacobs, The initial imperfection data bank at the Delft University of Technology: Part II, Technical Report LR-559 (Delft University of Technology, 1988)
    [67] A. W. H. Klompé, and P. C. den Reyer, The initial imperfection data bank at the Delft University of Technology: Part III, Technical Report LR-568 (Delft University of Technology, 1989)
    [68] S. G. P. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger, and R. Degenhardt, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct. 74, 118 (2014).
    [69] D. B. Muggeridge, and R. C. Tennyson, Buckling of axisymmetric imperfect circular cylindrical shells underaxial compression, AIAA J. 7, 2127 (1969).
    [70] C. Hühne, R. Rolfes, and J. Tessmer, A new approach for robust design of composite cylindrical shells under axial compression, in Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing 2005 (ESA SP-581) (Noordwijk, 2015), p. 141
    [71] H. N. R. Wagner, C. Hühne, and S. Niemann, Constant single-buckle imperfection principle to determine a lower bound for the buckling load of unstiffened composite cylinders under axial compression, Compos. Struct. 139, 120 (2016).
    [72] M. A. Arbelo, R. Degenhardt, S. G. P. Castro, and R. Zimmermann, Numerical characterization of imperfection sensitive composite structures, Compos. Struct. 108, 295 (2014).
    [73] B. Wang, P. Hao, G. Li, Y. Fang, X. Wang, and X. Zhang, Determination of realistic worst imperfection for cylindrical shells using surrogate model, Struct. Multidisc. Optim. 48, 777 (2013).
    [74] C. Hühne, R. Rolfes, E. Breitbach, and J. Teßmer, Robust design of composite cylindrical shells under axial compression—simulation and validation, Thin-Walled Struct. 46, 947 (2008).
    [75] P. Błażejewski, J. Marcinowski, and M. Rotter, 04.21: Buckling of externally pressurised spherical shells: experimental results compared with recent design recommendations, Ce/Papers 1, 1010 (2017).
    [76] R. C. Batista, and J. G. A. Croll, A design approach for unstiffened cylindrical shells under external pressure, in Proceedings of the International Conference on Thin Walled Structures (Glasgow, 1979)
    [77] P. Hao, B. Wang, G. Li, Z. Meng, K. Tian, D. Zeng, and X. Tang, Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors, Thin-Walled Struct. 82, 321 (2014).
    [78] K. Tian, B. Wang, P. Hao, and A. M. Waas, A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells, Int. J. Solids Struct. 148-149, 14 (2018).
    [79] P. Hao, B. Wang, K. Tian, K. Du, and X. Zhang, Influence of imperfection distributions for cylindrical stiffened shells with weld lands, Thin-Walled Struct. 93, 177 (2015).
    [80] P. Hao, B. Wang, K. Du, G. Li, K. Tian, Y. Sun, and Y. Ma, Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach, Compos. Struct. 136, 405 (2016).
    [81] B. Wang, K. Du, P. Hao, K. Tian, Y. J. Chao, L. Jiang, S. Xu, and X. Zhang, Experimental validation of cylindrical shells under axial compression for improved knockdown factors, Int. J. Solids Struct. 164, 37 (2019).
    [82] H. N. R. Wagner, E. M. Sosa, T. Ludwig, J. G. A. Croll, and C. Hühne, Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure, Int. J. Mech. Sci. 156, 205 (2019).
    [83] E. R. Lancaster, C. R. Calladine, and S. C. Palmer, Paradoxical buckling behaviour of a thin cylindrical shell under axial compression, Int. J. Mech. Sci. 42, 843 (2000).
    [84] M. Rastgar, and H. Showkati, Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection, J. Constr. Steel Res. 145, 289 (2018).
    [85] D. Zhang, Z. Chen, Y. Li, P. Jiao, H. Ma, P. Ge, and Y. Gu, Lower-bound axial buckling load prediction for isotropic cylindrical shells using probabilistic random perturbation load approach, Thin-Walled Struct. 155, 106925 (2020).
    [86] P. Hao, X. Yuan, C. Liu, B. Wang, H. Liu, G. Li, and F. Niu, An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Eng. 339, 205 (2018).
    [87] P. Hao, D. C. Liu, K. P. Zhang, Y. Yuan, B. Wang, G. Li, and X. Zhang, Intelligent layout design of curvilinearly stiffened panels via deep learning-based method, Mater. Des. 197, 109180 (2021).
    [88] P. Hao, Y. T. Wang, R. Ma, H. L. Liu, B. Wang, and G. Li, A new reliability-based design optimization framework using isogeometric analysis, Comput. Methods Appl. Mech. Eng. 345, 476 (2019).
    [89] G. N. Karam, and L. J. Gibson, Elastic buckling of cylindrical shells with elastic cores—II. Experiments, Int. J. Solids Struct. 32, 1285 (1995).
    [90] E. T. Hambly, and C. R. Calladine, Buckling experiments on damaged cylindrical shells, Int. J. Solids Struct. 33, 3539 (1996).
    [91] C. Bisagni, and P. Cordisco, Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque, Compos. Struct. 73, 138 (2006).
    [92] R. Khakimova, S. G. P. Castro, D. Wilckens, K. Rohwer, and R. Degenhardt, Buckling of axially compressed CFRP cylinders with and without additional lateral load: experimental and numerical investigation, Thin-Walled Struct. 119, 178 (2017).
    [93] G. Totaro, and F. De Nicola, Recent advance on design and manufacturing of composite anisogrid structures for space launchers, Acta Astronaut. 81, 570 (2012).
    [94] H. Fan, D. Fang, L. Chen, Z. Dai, and W. Yang, Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores, Compos. Sci. Tech. 69, 2695 (2009).
    [95] L. Chen, H. Fan, F. Sun, L. Zhao, and D. Fang, Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder, Thin-Walled Struct. 68, 75 (2013).
    [96] W. Li, F. Sun, P. Wang, H. Fan, and D. Fang, A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments, Compos. Part A-Appl. Sci. Manuf. 81, 313 (2016).
    [97] M. Li, F. Sun, C. Lai, H. Fan, B. Ji, X. Zhang, D. Liu, and D. Fang, Fabrication and testing of composite hierarchical isogrid stiffened cylinder, Compos. Sci. Tech. 157, 152 (2018).
    [98] W. Li, Q. Zheng, H. Fan, and B. Ji, Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders, Engineering 6, 196 (2020).
    [99] M. Rouhi, H. Ghayoor, J. Fortin-Simpson, T. T. Zacchia, S. V. Hoa, and M. Hojjati, Design, manufacturing, and testing of a variable stiffness composite cylinder, Compos. Struct. 184, 146 (2018).
    [100] P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: experimental study, Thin-Walled Struct. 166, 108118 (2021).
    [101] P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 2: numerical study, Thin-Walled Struct. 169, 108330 (2021).
    [102] M. W. Hilburger, M. C. Lindell, W. A. Waters, and N. W. Gardner, Test and analysis of buckling-critical stiffened metallic launch vehicle cylinders, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018)
    [103] M. T. Rudd, M. W. Hilburger, A. E. Lovejoy, M. C. Lindell, N. W. Gardner, and M. R. Schultz, Buckling response of a large-scale, seamless, orthogrid-stiffened metallic cylinder, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018)
    [104] A. Przekop, M. R. Schultz, and M. W. Hilburger, Design of buckling-critical large-scale sandwich composite cylinder test articles, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018)
    [105] J. M. T. Thompson, J. W. Hutchinson, and J. Sieber, Probing shells against buckling: a nondestructive technique for laboratory testing, Int. J. Bifurcat. Chaos 27, 1730048 (2017).
    [106] F. Franzoni, F. Odermann, E. Lanbans, C. Bisagni, M. Andrés Arbelo, and R. Degenhardt, Experimental validation of the vibration correlation technique robustness to predict buckling of unstiffened composite cylindrical shells, Compos. Struct. 224, 111107 (2019).
    [107] L. A. Harris, H. S. Suer, W. T. Skene, and R. J. Benjamin, The stability of thin-walled unstiffened circular cylinders under axial compression including the effects of internal pressure, J. Aeronaut. Sci. 24, 587 (1957).
    [108] O. G. S. Ricardo, An experimental investigation of the radial displacements of a thin-walled cylinder, Technical Report, NASA-CR-934 (National Aeronautics and Space Administration, 1967)
    [109] R. D. Caswell, D. B. Muggeridge, and R. C. Tennyson, Buckling of circular cylindrical shells having axisymmetric imperfection distributions, AIAA J. 9, 924 (1971).
    [110] J. W. Hutchinson, D. B. Muggeridge, and R. C. Tennyson, Effect of a local axisymmetric imperfection on the buckling behavior of a circular cylindrical shell under axial compression, AIAA J. 9, 48 (1971).
    [111] R. L. Carri, Buckling behavior of composite cylinders subjected to compressive loading, Technical Report, NASA-CR-132264 (National Aeronautics and Space Administration, 1973)
    [112] D. J. Wilkins, and T. S. Love, Combined compression-torsion buckling tests of laminated composite cylindrical shells, J. Aircraft 12, 885 (1975).
    [113] C. T. Herakovich, Theoretical-experimental correlation for buckling of composite cylinders under combined compression and torsion, NASA-CR-157358 (National Aeronautics and Space Administration, 1978)
    [114] M. Uemura, and H. Kasuya, Coupling effect on axial compressive buckling of laminated composite cylindrical shells, Prog. Sci. Eng. Compos., 583 (1982)
    [115] Y. Hirano, Optimization of laminated composite cylindrical shells for axial buckling, Jpn. Soc. Aeronaut. Space Sci. Trans. 26, 154 (1983)
    [116] R. C. Tennyson, and J. S. Hansen, Optimum design for buckling of laminated cylinders, in Collapse: The Buckling of Structures in Theory and Practice, edited by J. M. T. Thompson, and J. W. Hunt (Cambridge University Press, Cambridge, 1983)
    [117] S. Kobayashi, H. Seko, and K. Koyama, Compressive buckling of CFRP circular cylindrical shells. I—Theoretical analysis and experiment, J. Jpn. Soc. Aeronaut. Space Sci. 32, 111 (1984).
    [118] C. G. Foster, Axial compression buckling of conical and cylindrical shells, Exp. Mech. 27, 255 (1987).
    [119] G. Sun, Optimization of laminated cylinders for buckling (University of Toronto, 1987)
    [120] B. Geier, H. Klein, and R. Zimmermann, Buckling tests with axially compressed unstiffened cylindrical shells made from CFRP (DLR, 1991)
    [121] V. Giavotto, C. Poggi, M. Chryssanthopoulos, and P. Dowling, Buckling behaviour of composite shells under combined loading, in Buckling of Shell Structures, on Land, in the Sea and in the Air, edited by J. F. Jullien (CRC Press, Boca Raton, 1991), pp. 53-60
    [122] S. Krishnakumar, and C. G. Foster, Axial load capacity of cylindrical shells with local geometric defects, Exp. Mech. 31, 104 (1991).
    [123] W. A. Waters, Effects of initial geometric imperfections on the behavior of graphite-epoxy cylinders loaded in compression (1996)
    [124] M. H. Schneider Jr., Investigation of the stability of imperfect cylinders using structural models, Eng. Struct. 18, 792 (1996).
    [125] C. Bisagni, Experimental buckling of thin composite cylinders in compression, AIAA J. 37, 276 (1999).
    [126] T. D. Kim, Fabrication and testing of composite isogrid stiffened cylinder, Compos. Struct. 45, 1 (1999).
    [127] H. R. Meyer-Piening, M. Farshad, B. Geier, and R. Zimmermann, Buckling loads of CFRP composite cylinders under combined axial and torsion loading—experiments and computations, Compos. Struct. 53, 427 (2001).
    [128] C. Bisagni, and P. Cordisco, An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading, Compos. Struct. 60, 391 (2003).
    [129] M. W. Hilburger, M. P. Nemeth, and J. H. Starnes Jr., Shell buckling design criteria based on manufacturing imperfection signatures, AIAA J. 44, 654 (2006).
    [130] M. W. Hilburger, W. A. Waters Jr., W. T. Haynie, Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA01 (Test Dates: 19-21 November 2008), Technical Report, NASA/TP-2015-218785 (National Aeronautics and Space Administration, 2015)
    [131] R. Degenhardt, A. Kling, A. Bethge, J. Orf, L. Kärger, R. Zimmermann, K. Rohwer, and A. Calvi, Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells, Compos. Struct. 92, 1939 (2010).
    [132] W. T. Haynie, M. W. Hilburger, M. Bogge, and B. Kriegesmann, Validation of lower-bound estimates for compression-loaded cylindrical shells, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Honolulu, 2012)
    [133] R. S. Priyadarsini, V. Kalyanaraman, and S. M. Srinivasan, Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression, Int. J. Str. Stab. Dyn. 12, 1250028 (2012).
    [134] C. Bisagni, Composite cylindrical shells under static and dynamic axial loading: an experimental campaign, Prog. Aerosp. Sci. 78, 107 (2015).
    [135] C. Schillo, D. Röstermundt, and D. Krause, Experimental and numerical study on the influence of imperfections on the buckling load of unstiffened CFRP shells, Compos. Struct. 131, 128 (2015).
    [136] K. Kalnins, M. Arbelo, O. Ozolins, S. Castro, and R. Degenhard, Numerical characterization of the knock-down factor on unstiffened cylindrical shells with initial geometric imperfections, in ICCM International Conferences on Composite Materials (2015)
    [137] A. Takano, Buckling experiment on anisotropic long and short cylinders, Adv. Technol. Innov. 1, 25 (2016)
    [138] H. Wu, C. Lai, F. Sun, M. Li, B. Ji, W. Wei, D. Liu, X. Zhang, and H. Fan, Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: fabrication and testing, Acta Astronaut. 145, 268 (2018).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  42
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-11-24
  • 网络出版日期:  2022-12-05
  • 发布日期:  2022-01-19
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回