Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives
doi: 10.1007/s10409-021-09035-x
-
摘要: 薄壁筒壳结构作为航空航天的主承力构件, 在轴压载荷下易发生屈曲失稳, 并且对几何缺陷表现为强敏感性. 尽管经过数十年的研究, 精准地预测几何缺陷影响下轴压筒壳的折减因子仍是一个非常具有挑战的科学难题. 直至现在, NASA 20世纪提出航天薄壁轴压筒壳折减因子下限设计准则SP-8007仍被广泛使用, 随着制造工艺的进步和发展, SP-8007已经被证明过于保守. 近年来, 学者们基于数值方法和实验技术发展了一系列折减因子的确定方法, 本文对这些方法进行了全面综述, 其中作者提出的多点最不利扰动载荷法(WMPLA)是最具代表性的方法之一, 其以合理的方式有效地降低了传统折减因子预测方法的保守程度. 另外, 本文还基于搜集的1990~2020年轴压筒壳屈曲实验数据, 对原始的折减因子下限准则曲线进行了改进. 可以发现, 相比于原始的SP-8007准则, 新折减因子准则曲线整体上提升了0.1~0.3, 并且使用WMPLA预测的折减因子非常接近于新准则曲线的边界. 本文的研究工作有助于新一代轴压筒壳设计准则的建立, 并可服务于大直径航天运载器主承力薄壁结构的轻量化设计.Abstract: Thin-walled structures are commonly utilized in aerospace and aircraft structures, which are prone to buckling under axial compression and extremely sensitive to geometric imperfections. After decades of efforts, it still remains a challenging issue to accurately predict the lower-bound buckling load due to the impact of geometric imperfections. Up to now, the lower-bound curve in NASA SP-8007 is still widely used as the design criterion of aerospace thin-walled structures, and this series of knockdown factors (KDF) has been proven to be overly conservative with the significant promotion of the manufacturing process. In recent years, several new numerical and experimental methods for determining KDF have been established, which are systematically reviewed in this paper. The Worst Multiple Perturbation Load Approach (WMPLA) is one of the most representative methods to reduce the conservatism of traditional methods in a rational manner. Based on an extensive collection of test data from 1990 to 2020, a new lower-bound curve is approximated to produce a series of improved KDFs. It is evident that these new KDFs have an overall improvement of 0.1-0.3 compared with NASA SP-8007, and the KDF predicted by the WMPLA is very close to the front of the new curve. This may provide some insight into future design guidelines of axially compressed cylindrical shells, which is promising for the lightweight design of large-diameter aerospace structures.
-
2. Curve of lower-bound KDFs in NASA SP-8007 [6].
3. Schematic diagrams of the energy barrier and non-destructive experimental technique for cylindrical shells proposed in Ref. [52].
5. Imperfection sensitivity curve of SPLA [70].
8. Loading system for axial compression. a Schematic diagram of 3D model; b photograph of the real device [61].
10. Measurement system of buckling experiment [61].
Table 1. Comparison of different KDF determination methods and test results [81]
Method NASA SP-8007 Eigenmode imperfection method SPLA WMPLA Test KDF 0.386 0.505 0.675 0.566 0.569-0.897 Table 2. Summary of experimental data of axially compressed cylindrical shells
No. Ref. Year Material Structural type R (mm) R/t L (mm) Number of specimens Buckling load (kN) KDF Note 1 Harris [107] 1957 2S-H18 aluminum Cylindrical shell 222 1750 546 2 – 0.28-0.29 – Hard stainless steel 1006 4 – 0.76-0.89 – Hard stainless steel 2734 8 – 0.14-0.23 – 2 Ricardo [108] 1967 Mylar Cylindrical shell 102 400 279.4 9 0.75-0.82 0.60-0.66 – 3 Muggeridge [69] 1969 Photo-elastic plastic Cylindrical shell 67/100 110-280 188-282 11 – 0.57-0.92 – 4 Caswell [109] 1971 Epoxy Cylindrical shell 100 100-198 259-279 14 – 0.53-0.76 – 5 Hutchinson [110] 1971 Epoxy Cylindrical shell 100 175-219 279 7 – 0.35-0.92 – 6 Carri [111] 1973 Boron-Epoxy Cylindrical shell 46.35 19.90 464.3 2 713.82-753.92 0.75-0.79 [45/−45/05/90/45/−45/90/05/45/−45] Boron-Epoxy 46.6 20.00 426.7 1 512.44 0.83 [45/−45/04/90/90/04/45/–45] Boron-Epoxy 46.6 20.00 426.7 1 592.24 0.97 [45/−45/04/90/90/04/45/−45] Ti-6AL-4V/Boron-Epoxy 48.9 18.81 381 1 1116.15 0.73 [45/−45/013/0.026Ti] Ti-6AL-4V/Boron-Epoxy 48.5 26.08 381 1 679.86 0.79 [45/−45/07/0.026Ti] Ti-6AL-4V/Boron-Epoxy 48.25 33.51 381 2 442.66-472.39 0.76-0.81 [45/−45/04/0.026Ti] 7 Wilkins [112] 1975 Graphite-Epoxy Narmco5505/T300 Cylindrical shell 190.5 354 381 1 56.81 0.68 [45/−45]s 8 Herakovich [113] 1978 Boron-Epoxy Cylindrical shell 75.36 81 355.6 1 55.6 – [0/0/0/0/0/0/0/0] Boron-Epoxy 76.25 139 508.8 1 25.8 – [82.5/30/20/−82.5] Boron-Epoxy 76.58 69 507.2 1 61.6 – [−45/−45/45/45]s Graphite-Epoxy 76.38 132 508.8 1 20.1 – [−82.5/30/20/−82.5] Graphite-Epoxy 75.87 115 333.4 1 18.24 – [−45/45]s Boron-Epoxy 75.59 74 508 1 136.78 – [0/45/−45/90]s Graphite-Epoxy 75.59 60 508 1 54.27 – [−45/−45/45/45]s Graphite-Epoxy 75.54 74 428.6 1 100.08 – [0/45/−45/90]s Graphite-Epoxy 75.54 73 509.6 1 85.63 – [0/45/−45/90]s 9 Arbocz [65] 1979 Copper Cylindrical shell 101.6 844-915 196.85-203.20 7 3.04-3.85 – – Nickel Cylindrical shell 101.6 1030-1042 196.85 3 2.68-3.91 – – Brass Cylindrical shell 101.6 386-681 140.97-196.85 4 7.18-16.66 – – Welded stainless steel Cylindrical shell 117.86-118.49 258-261 148.59 6 41.70-56.05 – – Aluminum Stringer stiffened cylindrical shell 101.6 362-517 139.7 3 14.29-22.36 – – Aluminum Ring stiffened cylindrical shell 101.6 384-492 133.35-146.30 11 9.74-24.95 – – 10 Uemura [114] 1982 T300A/Epoxy Cylindrical shell 100 100 300 2 82.51-84.36 – [0/90/0/90]s 100 300 2 64.65-65.89 – [0/0/0/0/90/90/90/90] 200 300 1 12.16 – [−20/−20/20/20] 100 300 2 55.29-56.83 – [−20/−20/−20/−20]as 100 300 1 82.51 – [−20/20/−20/20]as 200 300 1 13.24 – [−45/45/45/−45] 200 300 1 13.24 – [−45/−45/45/45] 100 300 1 49.01 – [−45/−45/−45/−45]as 100 300 2 56.83-56.83 – [−45/45/−45/45]as 100 300 4 74.51-79.43 – [−70/70/−70/70]s 200 300 1 18.63 – [−70/70/−70/70] 100 300 2 58.80-58.80 – [−70/−70/−70/−70]as 100 300 2 78.2-80.66 – [−70/70/−70/70]as 11 Hirano [115] 1983 T300/S305 Cylindrical shell 100 122.85 300 3 61.8-63.7 0.75-0.77 [20/−20/0/0/40/−40] 3 43.9-51.3 0.69-0.81 [20/−20/40/−40/0/0] 3 32.7-34.8 0.78-0.83 [40/−40/20/−20/0/0] 12 Tennyson [116] 1983 3M SP 288 T300 Cylindrical shell 83.9 74.91 282.7 1 129.83 – [0/45/90/−45/0/45/90/−45] 83.82 84.67 287.8 1 124.04 0.92 [0/45/−45/90/90/−45/45/0] 83.85 83.85 284.7 1 89.35 1.03 [0/0/45/45/−45/−45/90/90] 83.79 90.10 274.1 1 97.09 – [0/45/−45/−45/45/0/0/0] 83.82 89.17 269.2 1 96.04 0.90 [0/0/45/45/−45/−45/0/0] 83.79 90.10 282.2 1 60.71 – [45/−45/−45/45/0/0/0/0] 83.57 181.67 282.7 1 15.22 0.90 [0/90/90/0] 83.57 194.35 267.7 1 17.18 1.17 [90/0/0/90] 13 Kobayashi [117] 1984 CFRP Cylindrical shell 100 238.1 200 1 13.27 0.956 [20/−20/90] 173.01 1 27.34 0.97 [0/45/−45/90] 111.23 1 88.39 0.756 [30/−30/−30/30/90/90] 98.33 1 98.19 0.904 [0/60/−60/−60/60/0] 14 Foster [118] 1987 Epoxy Cylindrical shell 50 255-398 49-58 4 0.15-0.38 0.84-0.99 No imposed imperfections 288-334 62-73 4 0.12-0.24 0.52-0.83 With imposed imperfections 15 Sun [119] 1987 AS/3501-6 Cylindrical shell 83.31 166.62 152.4 1 30.10 0.86 [26/−42/76/−3] 166.62 1 18.64 0.86 [0/90/90/0] 167.34 1 21.84 0.83 [−59/5/51/−59] 169.07 1 18.37 0.92 [90/0/0/90] 166.62 1 18.50 0.97 [−83/37/15/−86] 16 Dancy [66] 1988 Low carbon steel Cylindrical shell 33 330 100 33 3.05-4.68 – – 17 Geier [120] 1991 CFRP Cylindrical shell 250 200 510 2 221.48-227.76 0.80-0.82 [60/−60/0/0/68/−68/52/−52/37/−37] 200 2 90.12-93.46 0.92-0.95 [51/−51/45/−45/37/−37/19/−19/0/0] 200 2 227.76-287.23 0.83-1.02 [30/−30/90/90/22/−22/38/−38/53/−53] 400 1 68.92 1.03 [51/−51/90/−90/40/−40] 18 Giavotto [121] 1991 Kevlar fabric Cylindrical shell 350 336.54 550 2 32.48 0.88 [0/90/90/0] 31.79 0.84 [45/−45/−45/45] 19 Krishnakumar [122] 1991 Araldite LC 261/hardener LC 249 Cylindrical shell 77 197.44-596.9 69.3-192.5 36 – 0.66-0.98 – 20 Waters [123] 1996 AS4/3502 Cylindrical shell 203.2 201.19 355.6 1 133.59 0.74 [45/0/90]s 203.4 100.69 355.6 1 328.89 0.74 [45/−45/−45/45]2s 203.3 101.14 355.6 1 656.26 0.86 [45/0/90]2s 203 104.10 355.6 1 557.63 0.91 [45/904/−45/45]s 203.4 100.69 355.6 1 408.66 0.59 [45/04/−45/45]s 21 Schneider [124] 1996 Polycarbonate plastic Cylindrical shell 19.1 15.04 38.1 3 13.41-13.61 – Perfect 2 5.26-7.37 – Axisymmetric imperfectionwo/t = 0.3 22 Bisagni [125] 1999 CFRP fabricCFRP unidirectional Cylindrical shell 350 265.15 540 4 151.62-172.88 0.63-0.72 [0/45/−45/0] 265.15 4 151.62-172.88 0.85-0.99 [45/−45]s 291.67 2 92.86-96.27 0.53-0.55 [45/−45]2s 291.67 2 92.05-99.54 0.54-0.59 [90/0]2s 233.33 2 185.94-196.23 0.64-0.68 [90/30/−30/90] 233.33 2 155.35-159.06 0.98-0.99 [45/−45] 23 Kim [126] 1999 IM7/997-2 Isogrid stiffened cylindrical shell 624.8 – 368.3 1 117.88 – – 24 Meyer-Piening [127] 2001 CFRP Cylindrical shell 250 200 510 2 208-212.6 – [60/−60/0/0/68/−68/52/−52/37/−37] 3 213-222 – [37/−37/52/−52/68/−68/0/0/60/−60] 8 206.6-228.2 – [53/−53/8/−8/90/−90/68/−68/38/−38] 12 186-249.7 – [53/−53/38/−38/22/−22/90/−90/30/−30] 4 88-92.4 – [0/0/19/−19/37/−37/45/−45/51/−51] 6 156-172.8 – [51/−51/45/−45/37/−37/19/−19/0/0] 25 Bisagni [128] 2003 CFRP fabricCFRP unidirectional Cylindrical shell 350 292 540 1 74.93 – [45/−45]2s 292 1 83.66 – [0/45/−45/0]2s 265 1 97.95 – [45/-45]s 265 1 140.2 – [0/45/−45/0] 26 Hilburger [129] 2006 AS4/3502 Cylindrical shell 203.2 200 406.4 3 123.6 0.929 [−45/45/0/0]s 142 0.879 [−45/45/90/90]s 151.6 0.821 [−45/45/0/90]s 27 Bisagni [91] 2006 CFRP Stringer stiffened cylindrical shell 350 – 540 2 360.2-380.3 2.78-3.68 [45/−45] 28 Hilburger [130] 2008 Al-Li Orthogrid stiffened cylindrical shell 1219.2 – 1981.2 1 3065.71 – – 29 Fan [94] 2009 T700/bisphenol epoxy CFRC sandwich cylindrical shell with kagome cores 312.5 – 375 1 524.6 – – 30 Degenhardt [131] 2010 IM7/8552 Cylindrical shell 250 500 540 10 21.32-25.69 0.68-0.82 [24/−24/41/−41] 31 Haynie [132] 2012 Aluminum alloy 2024 Cylindrical shell 228.6 225 787.4 3 168-169 – – 32 Priyadarsini [133] 2012 CFRP Cylindrical shell 150.5 150.5 400 4 77.1 – [0/45/−45/0] 98.6 – [0/45/−45/0] 99.8 – [0/45/−45/0] 98.2 – [0/45/−45/0] 33 Chen [95] 2013 T700/Epoxy Carbon fiber reinforced lattice-core sandwich cylindrical shell 600 30 1600 1 1200 – – 34 Bisagni [134] 2015 IM7/8552 Cylindrical shell 250 500 520 2 13.01-15.34 – [45/−45/−45/45] 2 12.75-14.33 – [45/−45/−45/46] 2 14.41-15.79 – [45/−45/−45/47] 35 Schillo [135] 2015 AS7/8552 Cylindrical shell 115 147 215 2 55.4-62.1 – [90/30/−30]s 36 Kalnins [136] 2015 IM7/8552 Cylindrical shell 251.13 479.99 500 1 25.38 0.65 [24/−24/41/−41] 251.8 481.27 500 1 25.64 0.66 [24/−24/41/−41] 150.4 574.92 300 1 1.6 0.37 [0/45] 150.4 574.92 300 1 2.44 0.56 [0/45] 150.52 383.59 300 1 6.22 0.46 [0/60/−60] 150.61 383.82 300 1 6.34 0.46 [0/60/−60] 150.22 382.82 300 1 7.28 0.53 [0/60/−60] 150.66 383.94 300 1 8.71 0.50 [0/45/−45] 150.76 384.2 300 1 8.5 0.49 [0/45/−45] 150.73 384.12 300 1 9.63 0.56 [0/45/−45] 151.32 289.22 300 1 28.96 0.73 [24/−24/41/−41] 150.76 288.15 300 1 26.85 0.68 [24/−24/41/−41] 151.16 288.91 300 1 21.1 0.53 [24/−24/41/−41] 151.01 288.63 300 1 25.47 0.65 [24/−24/41/−41] 37 Takano [137] 2016 TR/HSX Cylindrical shell 68.00 139.34 136 1 13.197 0.6 [−70/70/0/0/70/−70] 71.75 147.03 287 1 11.87 0.54 [−70/70/0/0/70/−70] 72.67 148.91 436 1 11.537 0.525 [−70/70/0/0/70/−70] 68.00 194.84 136 1 12.997 0.615 [−70/70/0/0/70/−70] 73.83 211.56 443 1 12.647 0.578 [−70/70/0/0/70/−70] 74.00 422.86 148 1 1.806 0.877 [−70/0/70] 73.83 421.9 443 1 1.437 0.697 [−70/0/70] 68.00 139.34 136 1 12.665 0.576 [−70/70/0/0/70/−70] 72.67 148.91 436 1 8.738 0.397 [−70/70/0/0/70/−70] 68.00 194.84 136 1 10.366 0.491 [−70/70/0/0/70/−70] 72.67 208.21 436 1 9.875 0.451 [−70/70/0/0/70/−70] 68.00 586.21 136 1 0.583 0.605 [−50/0/50] 72.67 626.44 436 1 0.464 0.492 [−50/0/50] 38 Wang [61] 2016 Aluminum alloy Stiffened cylindrical shell 2250 – 2200 1 3151 0.62 – 39 Li [96] 2016 T700/Epoxy Carbon fiber reinforced lattice truss sandwich cylindrical shell 312.5 – 375 1 328.03 – – 40 Wang [62,81] 2017 Aluminum alloy Cylindrical shell 500 333 600 5 335.13-519.39 0.57-0.89 – 41 Khakimova [92] 2017 CFRP Cylindrical shell 400 533 800 2 58.3-63.3 0.65-0.71 [34/−34/0/0/53/−53] 42 Rudd [103] 2018 Al 2219 Seamless orthogrid stiffened cylindrical shell 1225.6 – 2286 1 3302.79 – – 43 Hilburger [102] 2018 Al-Li Stiffened cylindrical shell 1219.2 – 1981.2 1 2878 – – 44 Wu [138] 2018 T700/Epoxy Hierarchical orthogrid stiffened cylindrical shell 312.5-315 – 590-596 2 132.74-359.24 – – 45 Li [97] 2018 T700/Epoxy Hierarchical isogrid stiffened cylindrical shell 312.5 – 431 1 741.4 – [0/60/−60]s 46 Li [98] 2020 T700/Epoxy Folded lattice-core sandwich cylindrical shell 312.5 – 375 1 293.4 – – -
[1] R. Lorenz, Achsensymmetrische verzerrungen in dünnwandigen hohlzylindern (in German), Z. Vereines Dtsch Ingen. 52 , 1706 (1908)[2] S. P. Timoshenko, and J. M. Gere, Theory of Elastic Stability, 2nd ed (Dover Publications, New York, 2009) [3] L. H. Donnell, and C. C. Wan, Effect of imperfections on buckling of thin cylinders and columns under axial compression, J. Appl. Mech. 17, 73 (1950). [4] T. von Kármán, and H. Tsien, The Buckling of Thin Cylindrical Shells under Axial Compression (Elsevier, 2012), pp. 165-181 [5] W. T. Koiter, On the Stability of Elastic Equilibrium, Vol. 833 (National Aeronautics and Space Administration, 1967) [6] J. P. Peterson, P. Seide, V. I. Weingarten, J. P. Peterson, P. Seide, and V. I. Weingarten, Buckling of thin-walled circular cylinders, NASA SP-8007 (NASA Special Publication, 1968) [7] B. O. Almroth, A. B. Burns, and E. V. Pittner, Design criteria for axially loaded cylindrical shells, J. Spacecraft Rockets 7, 714 (1971). [8] A. Takano, Statistical knockdown factors of buckling anisotropic cylinders under axial compression, J. Appl. Mech. 79, 051004 (2012). [9] J. M. Rotter, and H. Schmidt, Buckling of Steel Shells: European Design Recommendations (European Convention for Constructional Steelwork (ECCS), 2014) [10] H. N. R. Wagner, C. Hühne, S. Niemann, K. Tian, B. Wang, and P. Hao, Robust knockdown factors for the design of cylindrical shells under axial compression: analysis and modeling of stiffened and unstiffened cylinders, Thin-Walled Struct. 127, 629 (2018). [11] H. N. R. Wagner, C. Hühne, and S. Niemann, Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells—development and validation, Compos. Struct. 173, 281 (2017). [12] Z. R. Tahir, and P. Mandal, Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression, Eng. Struct. 152, 843 (2017). [13] M. Hilburger, Developing the next generation shell buckling design factors and technologies, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Honolulu, 2013) [14] R. Degenhardt, New robust design guideline for imperfection sensitive composite launcher structures—the DESICOS project, in 3rd International Conference on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures (2015) [15] B. Wang, P. Hao, K. Du, and K. Tian, Lightweight design theory and method of grid stiffened cylinder shell allowing for imperfection sensitivity (in Chinese), China Basic Sci. 20 , 28 (2018)[16] J. G. Teng, Buckling of thin shells: recent advances and trends, Appl. Mech. Rev. 49, 263 (1996). [17] J. Arbocz, and J. H. Starnes Jr., Future directions and challenges in shell stability analysis, Thin-Walled Struct. 40, 729 (2002). [18] H. Schmidt, Stability of steel shell structures, J. Constr. Steel Res. 55, 159 (2000). [19] Q. Du, Advance and application for the morden nonlinear stability theory of the thin shell (in Chinese), Struct. Environ. Eng. 29 , 41 (2002)[20] Y. Zhao, and J. Teng, Stability design of axially compressed thin steel cylindrical shells (in Chinese), Eng. Mech. 20 , 116 (2003)[21] B. L. O. Edlund, Buckling of metallic shells: buckling and postbuckling behaviour of isotropic shells, especially cylinders, Struct. Control Health Monit. 14, 693 (2007). [22] X. Bai, and R. Guo, Main branches of recent elastic stability theory (in Chinese), J. Nav. Univ. Eng. 16 , 44 (2004)[23] P. Qiao, Y. Wang, and L. Lu, Advances in stability study of cylindrical shells (in Chinese), Chin. Q. Mech. 39 , 223 (2018)[24] F. S. Liguori, G. Zucco, A. Madeo, D. Magisano, L. Leonetti, G. Garcea, and P. M. Weaver, Postbuckling optimisation of a variable angle tow composite wingbox using a multi-modal Koiter approach, Thin-Walled Struct. 138, 183 (2019). [25] A. Madeo, R. M. J. Groh, G. Zucco, P. M. Weaver, G. Zagari, and R. Zinno, Post-buckling analysis of variable-angle tow composite plates using Koiter’s approach and the finite element method, Thin-Walled Struct. 110, 1 (2017). [26] G. Garcea, F. S. Liguori, L. Leonetti, D. Magisano, and A. Madeo, Accurate and efficient a posteriori, Int. J. Numer. Meth. Engng. 112, 1154 (2017). [27] R. J. Mania, A. Madeo, G. Zucco, and T. Kubiak, Imperfection sensitivity of post-buckling of FML channel section column, Thin-Walled Struct. 114, 32 (2017). [28] F. S. Liguori, A. Madeo, D. Magisano, L. Leonetti, and G. Garcea, Post-buckling optimisation strategy of imperfection sensitive composite shells using Koiter method and Monte Carlo simulation, Compos. Struct. 192, 654 (2018). [29] K. Liang, M. Ruess, and M. Abdalla, An eigenanalysis-based bifurcation indicator proposed in the framework of a reduced-order modeling technique for non-linear structural analysis, Int. J. Non-Linear Mech. 81, 129 (2016). [30] K. Liang, C. Yang, and Q. Sun, A smeared stiffener based reduced-order modelling method for buckling analysis of isogrid-stiffened cylinder, Appl. Math. Model. 77, 756 (2020). [31] J. L. Sanders Jr., Nonlinear theories for thin shells, Q. Appl. Math. 21 , 21 (1963)[32] W. T. Koiter, General equations of elastic stability for thin shells, in Symposium on the Theory of Shells to Honor Lloyd Hamilton Donnett (1967), pp. 187-230 [33] B. Budiansky, Notes on nonlinear shell theory, J. Appl. Mech. 35, 393 (1968). [34] M. N. Isabel Figueiredo, Local existence and regularity of the solution of the nonlinear thin shell model of Donnell-Mushtari-Vlasov, Appl. Anal. 36, 221 (1990). [35] C. P. Ellinas, and J. G. A. Croll, Elastic-plastic buckling design of cylindrical shells subject to combined axial compression and pressure loading, Int. J. Solids Struct. 22, 1007 (1986). [36] S. Yamada, and J. G. A. Croll, Contributions to understanding the behavior of axially compressed cylinders, J. Appl. Mech. 66, 299 (1999). [37] J. G. A. Croll, and C. P. Ellinas, Reduced stiffness axial load buckling of cylinders, Int. J. Solids Struct. 19, 461 (1983). [38] E. M. Sosa, L. A. Godoy, and J. G. A. Croll, Computation of lower-bound elastic buckling loads using general-purpose finite element codes, Comput. Struct. 84, 1934 (2006). [39] S. Yamada, and J. G. A. Croll, Buckling behavior of pressure loaded cylindrical panels, J. Eng. Mech. 115, 327 (1989). [40] J. G. A. Croll, Towards a rationally based elastic-plastic shell buckling design methodology, Thin-Walled Struct. 23, 67 (1995). [41] G. M. Zintilis, and J. G. A. Croll, Pressure buckling of end supported shells of revolution, Eng. Struct. 4, 222 (1982). [42] S. Yamada, and J. G. A. Croll, Buckling and post-buckling characteristics of pressure-loaded cylinders, J. Appl. Mech. 60, 290 (1993). [43] J. G. A. Croll, and R. C. Batista, Explicit lower bounds for the buckling of axially loaded cylinders, Int. J. Mech. Sci. 23, 331 (1981). [44] X. Ma, P. Hao, F. Wang, and B. Wang, Incomplete reduced stiffness method for imperfection sensitivity of cylindrical shells, Thin-Walled Struct. 157, 107148 (2020). [45] E. Chater, J. W. Hutchinson, K. W. Neale, Buckle propagation on a beam on a nonlinear elastic foundation, in Collapse: The Buckling of Structures in Theory and Practice, edited by J. M. T. Thompson, and J. W. Hunt (Cambridge University Press, Cambridge, 1983), pp. 31-41 [46] G. W. Hunt, Reflections and symmetries in space and time, IMA J. Appl. Math. 76, 2 (2011). [47] G. W. Hunt, G. J. Lord, and M. A. Peletier, Cylindrical shell buckling: a characterization of localization and periodicity, Discret. Contin. Dyn. Syst.-B 3, 505 (2003). [48] G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. Ahmer Wadee, C. J. Budd, and G. J. Lord, Cellular buckling in long structures, Nonlinear Dyn. 21, 3 (2000). [49] G. W. Hunt, and E. L. Neto, Maxwell critical loads for axially loaded cylindrical shells, J. Appl. Mech. 60, 702 (1993). [50] G. W. Hunt, H. M. Bolt, and J. M. T. Thompson, Structural localization phenomena and the dynamical phase-space analogy, Proc. R. Soc. Lond. A 425, 245 (1989). [51] C. J. Budd, G. W. Hunt, and R. Kuske, Asymptotics of cellular buckling close to the Maxwell load, Proc. R. Soc. Lond. A 457, 2935 (2001). [52] J. M. T. Thompson, and J. Sieber, Shock-sensitivity in shell-like structures: with simulations of spherical shell buckling, Int. J. Bifurcat. Chaos 26, 1630003 (2016). [53] J. M. T. Thompson, and G. H. M. van der Heijden, Quantified “shock-sensitivity” above the Maxwell load, Int. J. Bifurcat. Chaos 24, 1430009 (2014). [54] J. W. Hutchinson, and J. M. T. Thompson, Imperfections and energy barriers in shell buckling, Int. J. Solids Struct. 148-149, 157 (2018). [55] J. W. Hutchinson, and J. M. T. Thompson, Nonlinear buckling interaction for spherical shells subject to pressure and probing forces, J. Appl. Mech. 84, 61001 (2017). [56] W. T. Koiter, The stability of elastic equilibrium. Stab Elastic Equilib (1970) [57] H. N. R. Wagner, C. Hühne, K. Rohwer, S. Niemann, and M. Wiedemann, Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells, Compos. Struct. 160, 1095 (2017). [58] B. Wang, X. Ma, P. Hao, Y. Sun, K. Tian, G. Li, K. Zhang, L. Jiang, and J. Guo, Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections, Compos. Part B-Eng. 163, 314 (2019). [59] Y. Chen, Z. X. Zhu, Y. Q. Li, and T. Tanh, On ultimate bearing capability of sandwich composite cylinders for underwater vehicle under hydrostatic external pressure, J. Nav. Univ. Eng. 2 , 83 (2018)[60] M. W. Hilburger, and J. H. Starnes Jr., Effects of imperfections of the buckling response of composite shells, Thin-Walled Struct. 42, 369 (2004). [61] B. Wang, K. Du, P. Hao, C. Zhou, K. Tian, S. Xu, Y. Ma, and X. Zhang, Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression, Thin-Walled Struct. 109, 13 (2016). [62] B. Wang, S. Zhu, P. Hao, X. Bi, K. Du, B. Chen, X. Ma, and Y. J. Chao, Buckling of quasi-perfect cylindrical shell under axial compression: a combined experimental and numerical investigation, Int. J. Solids Struct. 130-131, 232 (2018). [63] J. Arbocz, The Imperfection Data Bank, a Mean to Obtain Realistic Buckling Loads (Springer, Berlin, Heidelberg, 1982) [64] Z. Chen, H. Fan, J. Cheng, P. Jiao, F. Xu, and C. Zheng, Buckling of cylindrical shells with measured settlement under axial compression, Thin-Walled Struct. 123, 351 (2018). [65] J. Arbocz, and H. Abramovich, The initial imperfection data bank at the Delft University of Technology: Part I, Technical Report LR-290 (Delft University of Technology, 1979) [66] R. Dancy, and D. Jacobs, The initial imperfection data bank at the Delft University of Technology: Part II, Technical Report LR-559 (Delft University of Technology, 1988) [67] A. W. H. Klompé, and P. C. den Reyer, The initial imperfection data bank at the Delft University of Technology: Part III, Technical Report LR-568 (Delft University of Technology, 1989) [68] S. G. P. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger, and R. Degenhardt, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct. 74, 118 (2014). [69] D. B. Muggeridge, and R. C. Tennyson, Buckling of axisymmetric imperfect circular cylindrical shells underaxial compression, AIAA J. 7, 2127 (1969). [70] C. Hühne, R. Rolfes, and J. Tessmer, A new approach for robust design of composite cylindrical shells under axial compression, in Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing 2005 (ESA SP-581) (Noordwijk, 2015), p. 141 [71] H. N. R. Wagner, C. Hühne, and S. Niemann, Constant single-buckle imperfection principle to determine a lower bound for the buckling load of unstiffened composite cylinders under axial compression, Compos. Struct. 139, 120 (2016). [72] M. A. Arbelo, R. Degenhardt, S. G. P. Castro, and R. Zimmermann, Numerical characterization of imperfection sensitive composite structures, Compos. Struct. 108, 295 (2014). [73] B. Wang, P. Hao, G. Li, Y. Fang, X. Wang, and X. Zhang, Determination of realistic worst imperfection for cylindrical shells using surrogate model, Struct. Multidisc. Optim. 48, 777 (2013). [74] C. Hühne, R. Rolfes, E. Breitbach, and J. Teßmer, Robust design of composite cylindrical shells under axial compression—simulation and validation, Thin-Walled Struct. 46, 947 (2008). [75] P. Błażejewski, J. Marcinowski, and M. Rotter, 04.21: Buckling of externally pressurised spherical shells: experimental results compared with recent design recommendations, Ce/Papers 1, 1010 (2017). [76] R. C. Batista, and J. G. A. Croll, A design approach for unstiffened cylindrical shells under external pressure, in Proceedings of the International Conference on Thin Walled Structures (Glasgow, 1979) [77] P. Hao, B. Wang, G. Li, Z. Meng, K. Tian, D. Zeng, and X. Tang, Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors, Thin-Walled Struct. 82, 321 (2014). [78] K. Tian, B. Wang, P. Hao, and A. M. Waas, A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells, Int. J. Solids Struct. 148-149, 14 (2018). [79] P. Hao, B. Wang, K. Tian, K. Du, and X. Zhang, Influence of imperfection distributions for cylindrical stiffened shells with weld lands, Thin-Walled Struct. 93, 177 (2015). [80] P. Hao, B. Wang, K. Du, G. Li, K. Tian, Y. Sun, and Y. Ma, Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach, Compos. Struct. 136, 405 (2016). [81] B. Wang, K. Du, P. Hao, K. Tian, Y. J. Chao, L. Jiang, S. Xu, and X. Zhang, Experimental validation of cylindrical shells under axial compression for improved knockdown factors, Int. J. Solids Struct. 164, 37 (2019). [82] H. N. R. Wagner, E. M. Sosa, T. Ludwig, J. G. A. Croll, and C. Hühne, Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure, Int. J. Mech. Sci. 156, 205 (2019). [83] E. R. Lancaster, C. R. Calladine, and S. C. Palmer, Paradoxical buckling behaviour of a thin cylindrical shell under axial compression, Int. J. Mech. Sci. 42, 843 (2000). [84] M. Rastgar, and H. Showkati, Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection, J. Constr. Steel Res. 145, 289 (2018). [85] D. Zhang, Z. Chen, Y. Li, P. Jiao, H. Ma, P. Ge, and Y. Gu, Lower-bound axial buckling load prediction for isotropic cylindrical shells using probabilistic random perturbation load approach, Thin-Walled Struct. 155, 106925 (2020). [86] P. Hao, X. Yuan, C. Liu, B. Wang, H. Liu, G. Li, and F. Niu, An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Eng. 339, 205 (2018). [87] P. Hao, D. C. Liu, K. P. Zhang, Y. Yuan, B. Wang, G. Li, and X. Zhang, Intelligent layout design of curvilinearly stiffened panels via deep learning-based method, Mater. Des. 197, 109180 (2021). [88] P. Hao, Y. T. Wang, R. Ma, H. L. Liu, B. Wang, and G. Li, A new reliability-based design optimization framework using isogeometric analysis, Comput. Methods Appl. Mech. Eng. 345, 476 (2019). [89] G. N. Karam, and L. J. Gibson, Elastic buckling of cylindrical shells with elastic cores—II. Experiments, Int. J. Solids Struct. 32, 1285 (1995). [90] E. T. Hambly, and C. R. Calladine, Buckling experiments on damaged cylindrical shells, Int. J. Solids Struct. 33, 3539 (1996). [91] C. Bisagni, and P. Cordisco, Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque, Compos. Struct. 73, 138 (2006). [92] R. Khakimova, S. G. P. Castro, D. Wilckens, K. Rohwer, and R. Degenhardt, Buckling of axially compressed CFRP cylinders with and without additional lateral load: experimental and numerical investigation, Thin-Walled Struct. 119, 178 (2017). [93] G. Totaro, and F. De Nicola, Recent advance on design and manufacturing of composite anisogrid structures for space launchers, Acta Astronaut. 81, 570 (2012). [94] H. Fan, D. Fang, L. Chen, Z. Dai, and W. Yang, Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores, Compos. Sci. Tech. 69, 2695 (2009). [95] L. Chen, H. Fan, F. Sun, L. Zhao, and D. Fang, Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder, Thin-Walled Struct. 68, 75 (2013). [96] W. Li, F. Sun, P. Wang, H. Fan, and D. Fang, A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments, Compos. Part A-Appl. Sci. Manuf. 81, 313 (2016). [97] M. Li, F. Sun, C. Lai, H. Fan, B. Ji, X. Zhang, D. Liu, and D. Fang, Fabrication and testing of composite hierarchical isogrid stiffened cylinder, Compos. Sci. Tech. 157, 152 (2018). [98] W. Li, Q. Zheng, H. Fan, and B. Ji, Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders, Engineering 6, 196 (2020). [99] M. Rouhi, H. Ghayoor, J. Fortin-Simpson, T. T. Zacchia, S. V. Hoa, and M. Hojjati, Design, manufacturing, and testing of a variable stiffness composite cylinder, Compos. Struct. 184, 146 (2018). [100] P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: experimental study, Thin-Walled Struct. 166, 108118 (2021). [101] P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 2: numerical study, Thin-Walled Struct. 169, 108330 (2021). [102] M. W. Hilburger, M. C. Lindell, W. A. Waters, and N. W. Gardner, Test and analysis of buckling-critical stiffened metallic launch vehicle cylinders, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018) [103] M. T. Rudd, M. W. Hilburger, A. E. Lovejoy, M. C. Lindell, N. W. Gardner, and M. R. Schultz, Buckling response of a large-scale, seamless, orthogrid-stiffened metallic cylinder, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018) [104] A. Przekop, M. R. Schultz, and M. W. Hilburger, Design of buckling-critical large-scale sandwich composite cylinder test articles, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018) [105] J. M. T. Thompson, J. W. Hutchinson, and J. Sieber, Probing shells against buckling: a nondestructive technique for laboratory testing, Int. J. Bifurcat. Chaos 27, 1730048 (2017). [106] F. Franzoni, F. Odermann, E. Lanbans, C. Bisagni, M. Andrés Arbelo, and R. Degenhardt, Experimental validation of the vibration correlation technique robustness to predict buckling of unstiffened composite cylindrical shells, Compos. Struct. 224, 111107 (2019). [107] L. A. Harris, H. S. Suer, W. T. Skene, and R. J. Benjamin, The stability of thin-walled unstiffened circular cylinders under axial compression including the effects of internal pressure, J. Aeronaut. Sci. 24, 587 (1957). [108] O. G. S. Ricardo, An experimental investigation of the radial displacements of a thin-walled cylinder, Technical Report, NASA-CR-934 (National Aeronautics and Space Administration, 1967) [109] R. D. Caswell, D. B. Muggeridge, and R. C. Tennyson, Buckling of circular cylindrical shells having axisymmetric imperfection distributions, AIAA J. 9, 924 (1971). [110] J. W. Hutchinson, D. B. Muggeridge, and R. C. Tennyson, Effect of a local axisymmetric imperfection on the buckling behavior of a circular cylindrical shell under axial compression, AIAA J. 9, 48 (1971). [111] R. L. Carri, Buckling behavior of composite cylinders subjected to compressive loading, Technical Report, NASA-CR-132264 (National Aeronautics and Space Administration, 1973) [112] D. J. Wilkins, and T. S. Love, Combined compression-torsion buckling tests of laminated composite cylindrical shells, J. Aircraft 12, 885 (1975). [113] C. T. Herakovich, Theoretical-experimental correlation for buckling of composite cylinders under combined compression and torsion, NASA-CR-157358 (National Aeronautics and Space Administration, 1978) [114] M. Uemura, and H. Kasuya, Coupling effect on axial compressive buckling of laminated composite cylindrical shells, Prog. Sci. Eng. Compos., 583 (1982) [115] Y. Hirano, Optimization of laminated composite cylindrical shells for axial buckling, Jpn. Soc. Aeronaut. Space Sci. Trans. 26 , 154 (1983)[116] R. C. Tennyson, and J. S. Hansen, Optimum design for buckling of laminated cylinders, in Collapse: The Buckling of Structures in Theory and Practice, edited by J. M. T. Thompson, and J. W. Hunt (Cambridge University Press, Cambridge, 1983) [117] S. Kobayashi, H. Seko, and K. Koyama, Compressive buckling of CFRP circular cylindrical shells. I—Theoretical analysis and experiment, J. Jpn. Soc. Aeronaut. Space Sci. 32, 111 (1984). [118] C. G. Foster, Axial compression buckling of conical and cylindrical shells, Exp. Mech. 27, 255 (1987). [119] G. Sun, Optimization of laminated cylinders for buckling (University of Toronto, 1987) [120] B. Geier, H. Klein, and R. Zimmermann, Buckling tests with axially compressed unstiffened cylindrical shells made from CFRP (DLR, 1991) [121] V. Giavotto, C. Poggi, M. Chryssanthopoulos, and P. Dowling, Buckling behaviour of composite shells under combined loading, in Buckling of Shell Structures, on Land, in the Sea and in the Air, edited by J. F. Jullien (CRC Press, Boca Raton, 1991), pp. 53-60 [122] S. Krishnakumar, and C. G. Foster, Axial load capacity of cylindrical shells with local geometric defects, Exp. Mech. 31, 104 (1991). [123] W. A. Waters, Effects of initial geometric imperfections on the behavior of graphite-epoxy cylinders loaded in compression (1996) [124] M. H. Schneider Jr., Investigation of the stability of imperfect cylinders using structural models, Eng. Struct. 18, 792 (1996). [125] C. Bisagni, Experimental buckling of thin composite cylinders in compression, AIAA J. 37, 276 (1999). [126] T. D. Kim, Fabrication and testing of composite isogrid stiffened cylinder, Compos. Struct. 45, 1 (1999). [127] H. R. Meyer-Piening, M. Farshad, B. Geier, and R. Zimmermann, Buckling loads of CFRP composite cylinders under combined axial and torsion loading—experiments and computations, Compos. Struct. 53, 427 (2001). [128] C. Bisagni, and P. Cordisco, An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading, Compos. Struct. 60, 391 (2003). [129] M. W. Hilburger, M. P. Nemeth, and J. H. Starnes Jr., Shell buckling design criteria based on manufacturing imperfection signatures, AIAA J. 44, 654 (2006). [130] M. W. Hilburger, W. A. Waters Jr., W. T. Haynie, Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA01 (Test Dates: 19-21 November 2008), Technical Report, NASA/TP-2015-218785 (National Aeronautics and Space Administration, 2015) [131] R. Degenhardt, A. Kling, A. Bethge, J. Orf, L. Kärger, R. Zimmermann, K. Rohwer, and A. Calvi, Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells, Compos. Struct. 92, 1939 (2010). [132] W. T. Haynie, M. W. Hilburger, M. Bogge, and B. Kriegesmann, Validation of lower-bound estimates for compression-loaded cylindrical shells, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Honolulu, 2012) [133] R. S. Priyadarsini, V. Kalyanaraman, and S. M. Srinivasan, Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression, Int. J. Str. Stab. Dyn. 12, 1250028 (2012). [134] C. Bisagni, Composite cylindrical shells under static and dynamic axial loading: an experimental campaign, Prog. Aerosp. Sci. 78, 107 (2015). [135] C. Schillo, D. Röstermundt, and D. Krause, Experimental and numerical study on the influence of imperfections on the buckling load of unstiffened CFRP shells, Compos. Struct. 131, 128 (2015). [136] K. Kalnins, M. Arbelo, O. Ozolins, S. Castro, and R. Degenhard, Numerical characterization of the knock-down factor on unstiffened cylindrical shells with initial geometric imperfections, in ICCM International Conferences on Composite Materials (2015) [137] A. Takano, Buckling experiment on anisotropic long and short cylinders, Adv. Technol. Innov. 1 , 25 (2016)[138] H. Wu, C. Lai, F. Sun, M. Li, B. Ji, W. Wei, D. Liu, X. Zhang, and H. Fan, Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: fabrication and testing, Acta Astronaut. 145, 268 (2018).