留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Failure behavior and criteria of metallic glasses

Chen Yan Dai Lanhong

非晶合金失效行为与准则[J]. 机械工程学报, 2022, 38(2): 121449. doi: 10.1007/s10409-022-09022-j
引用本文: 非晶合金失效行为与准则[J]. 机械工程学报, 2022, 38(2): 121449. doi: 10.1007/s10409-022-09022-j
Y. Chen, and L. Dai,Failure behavior and criteria of metallic glasses. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-022-09022-j'>https://doi.org/10.1007/s10409-022-09022-j
Citation: Y. Chen, and L. Dai,Failure behavior and criteria of metallic glasses. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-022-09022-j">https://doi.org/10.1007/s10409-022-09022-j

Failure behavior and criteria of metallic glasses

doi: 10.1007/s10409-022-09022-j
Funds: 

the National Natural Science Foundation of China Grant

the National Key Research and Development Program of China Grant

the Strategic Priority Research Program Grant

the Key Research Program of Frontier Sciences Grant

and the Science Challenge Project Grant

More Information
  • 摘要: 非晶合金具有优异的力学性能, 是一类新兴的先进结构材料. 然而, 该材料常温下表现的脆性断裂与复杂断裂行为极大地限制了其工程应用. 在过去的几十年, 国内外学者针对非晶合金的延性或脆性变形与断裂, 其中涉及材料成分、加载条件、样品尺寸等, 开展了广泛研究, 并在非晶合金失效行为认识上取得了重要进展. 剪切带、孔洞化和裂纹尖端场本质等微观断裂机制被一一揭示. 延脆转变行为与其内在的控制参数被发现. 为了有效描述和预测非晶合金的失效行为, 研究者们分别基于经验或从原子间相互作用出发, 建立了延性和脆性非晶合金的失效准则. 在本文中, 我们对以上进展进行了回顾和评述, 并提出了非晶合金失效有待进一步研究和厘清的重要问题.

     

  • 1.  Illustration of the two-unit mechanism for STZ percolation: a at small loads, the STZ near the notch experiences a small distortion, which has a negligible effect on the neighboring matrix, b the STZ is activated at a higher load, and collective vortex-like motion is caused, and c the following STZ is activated once the stress exceeds the threshold value [127].

    2.  Evolution of local von Mises strain and L5FS with macroscopic shear strain. Deformation patterns at a γ = 0.05 (before yielding) and at b γ = 0.15 (right before the emergence of the shear band), respectively. Strain gradient fields in the z direction immediately c before and d after shear band formation, respectively [128].

    3.  Plastic strain to fracture varies with sample thickness for ∆u = 10 μm (red solid line) and ∆u = 50 μm (blue solid line). The analytical prediction is consistent with experimental data [146] for Vit-1 and other similar compositions [29].

    4.  Energy dissipation map for shear band nucleation and growth as a function of sample thickness [29].

    5.  MGs experience necking behavior during the in situ TEM tensile tests. Necking starts early from the “notches” on the surfaces in the virgin sample (indicated by the white arrow in a) and then b-d develops gradually to e final failure [27].

    6.  Schematic of two fundamental atomic motions in MGs: a a classical STZ and b an envisioned TTZ [15].

    7.  Numerical results of crack propagation at various applied strains in a-c Fep glass and d-f CuZr glass. The color indicates the local von Mises strain [33].

    8.  Experimental observation of the cavitation-dominated fracture process in the Fe-based MG. The experimental setup of inclined indentation is illustrated in a. b, c Scanning electron microscope images, atomic force microscope topographic image of the zoom-in straight crack (left) and height profiles of the top 10 cavities (right) after inclined indentation, respectively. d Zoomed-in topographic images of the pink (left) and blue (right) rectangular zones in c. e, f Topographic images of the crack tip and the cavity ahead of the crack tip, respectively. Inset: height profile of the cavity. g, h Three-dimensional close-up topographies of another crack tip. i Crack propagation [177].

    9.  Cavitation pressure decreases with increasing pressure sensitivity coefficient [179].

    10.  Void growth for different rise times with an initial void radius of 1 μm under the same loading amplitude of 2 GPa [179].

    11.  Optical micrographs of the shear bands ahead of a the notch tip in the mode I case before crack initiation and b the crack trajectory along the curved shear band ABC [20].

    12.  The variation of plane-strain fracture toughness a with the ratio G/K and b with notch-root radius [196].

    13.  a Radial, b tangential, and c shear stress distributions in the plastic zone. d The angular distributions of stress components for different values of μ and β [46].

    14.  a Effective and b mean stress distributions in the plastic zone. The angular distributions of c the effective stress and d the mean stress for different values of μ and β [46].

    15.  a Radial, b tangential, and c shear strain distributions in the plastic zone [46].

    16.  Isolines of mode I a fracture toughness, b Rmaxc, and c Rxc as a function of shear dilatancy β (μ = β) and Poisson’s ratio v [46].

    17.  Isolines of shape factor Λc as a function of shear dilatancy β (μ = β) and Poisson’s ratio v [46].

    18.  The correlation of fracture energy Gf with elastic modulus ratio for the as-cast MGs [50].

    19.  Schematic illustration of shear failure along the easiest shear direction and local quasi-cleavage fracture along the normal direction at the atomic scale [14].

    20.  Tensile fracture strength σT and tensile shear fracture angle θT vary with the ratio α [52].

    21.  Eccentric ellipse-like failure envelope in the τ-σ stress space: a shear failure with 45° < θT < 90° and 0° < θC < 45° and b normal tensile fracture with θT = 90° [14].

    22.  Tensile and compressive failure angles varying with the factors α and βSD [14].

    Table 1.   Failure strengths and angles of MGs in tension and compression [14]

    CompositesFailure strengthsFailure anglesRef.
    σT (GPa) σC (GPa) θT (°) θC (°)
    Pd77.5Cu6Si16.51.441.515045[71]
    Pd78Cu6Si161.451.545545[72]
    Pd40Ni40P201.461.785041.9[73]

    1.61.745642[74,75]
    Zr40.1Ti12Ni9.3Cu12.2Be26.41.982.051.640.8[76]
    Zr41.2Ti13.8Ni10Cu12.5Be22.51.82.05544[15]

    1.81.955642[77]

    1.891.9[78]
    Zr52.5Ni14.6Al10Cu17.9Ti51.651.885444[79]

    1.661.826042.5[80]

    1.661.765642[81]
    Zr55Al10Cu30Ni51.531.775341[82]

    1.61.8[83]

    1.511.82[84]
    Zr56.2Ti13.8Nb5.0Ni5.6Cu6.9Be12.51.4871.6695945[85]
    Zr57Cu15.4Ni12.6Al10Nb51.21.8[86]
    Zr59Cu20Al10Ni8Ti31.581.695443[87]
    Zr60Al10Cu20Pd101.681.885545[88]
    Zr60Al10Cu25Ni51.631.76[82]
    Co80Nb14B62.883.47[73]
    Cu60Zr30Ti102.02.15[89]
    Cu60Hf25Ti152.132.16[89]
    Pd80Si201.3390[90]
    (Al84Y9Ni5Co2)0.95Sn590[91]
    La62Al14(Cu,Ni)240.550.569040-45[92]
    Zr52.5Ni14.6Al10Cu17.9Ti590[93]
    Zr59Cu20Al10Ni8Ti390[93]
    Zr80Pd2090[94]
    Zr55Al10Ni5Cu30

    Break or split[93]
    Ti50Cu20Ni23Sn7Break or split[93]
    Fe65.5Cr4Mo4Ga4P12C5B5.5Break[95]
    下载: 导出CSV
  • [1] F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall. 25, 407 (1977).
    [2] A. S. Argon, Plastic deformation in metallic glasses, Acta Metall. 27, 47 (1979).
    [3] M. L. Falk, and J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E 57, 7192 (1998).
    [4] G. Biroli, In search of the perfect glass, Nat. Phys. 10, 555 (2014).
    [5] C. P. Goodrich, A. J. Liu, and S. R. Nagel, Solids between the mechanical extremes of order and disorder, Nat. Phys. 10, 578 (2014).
    [6] D. B. Miracle, A structural model for metallic glasses, Nat. Mater. 3, 697 15378050(2004).
    [7] M. L. Falk, and J. S. Langer, Deformation and failure of amorphous, solidlike materials, Annu. Rev. Condens. Matter Phys. 2, 353 (2011).
    [8] K. Kamrin, and E. Bouchbinder, Two-temperature continuum thermomechanics of deforming amorphous solids, J. Mech. Phys. Solids 73, 269 (2014).
    [9] F. Spaepen, On the fracture morphology of metallic glasses, Acta Metall. 23, 615 (1975).
    [10] A. S. Argon, and M. Salama, The mechanism of Fracture in Glassy materials capable of some inelastic deformation, Mater. Sci. Eng. 23, 219 (1976).
    [11] C. Schuh, T. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55, 4067 (2007).
    [12] A. L. Greer, Y. Q. Cheng, and E. Ma, Shear bands in metallic glasses, Mater. Sci. Eng.-R-Rep. 74, 71 (2013).
    [13] R. Raghavan, P. Murali, and U. Ramamurty, On factors influencing the ductile-to-brittle transition in a bulk metallic glass, Acta Mater. 57, 3332 (2009).
    [14] Y. Chen, M. Q. Jiang, Y. J. Wei, and L. H. Dai, Failure criterion for metallic glasses, Philos. Mag. 91, 4536 (2011).
    [15] M. Q. Jiang, Z. Ling, J. X. Meng, and L. H. Dai, Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage, Philos. Mag. 88, 407 (2008).
    [16] G. Ravichandran, and A. Molinari, Analysis of shear banding in metallic glasses under bending, Acta Mater. 53, 4087 (2005).
    [17] J. Xu, U. Ramamurty, and E. Ma, The fracture toughness of bulk metallic glasses, JOM 62, 10 (2010).
    [18] R. L. Narayan, P. Tandaiya, R. Narasimhan, and U. Ramamurty, Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass, Acta Mater. 80, 407 (2014).
    [19] P. Tandaiya, U. Ramamurty, and R. Narasimhan, Mixed mode (I and II) crack tip fields in bulk metallic glasses, J. Mech. Phys. Solids 57, 1880 (2009).
    [20] P. Tandaiya, R. Narasimhan, and U. Ramamurty, On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass, Acta Mater. 61, 1558 (2013).
    [21] R. Narasimhan, P. Tandaiya, I. Singh, R. L. Narayan, and U. Ramamurty, Fracture in metallic glasses: Mechanics and mechanisms, Int. J. Fract. 191, 53 (2015).
    [22] D. Jang, C. T. Gross, and J. R. Greer, Effects of size on the strength and deformation mechanism in Zr-based metallic glasses, Int. J. Plast. 27, 858 (2011).
    [23] K. M. Flores, and R. H. Dauskardt, Mean stress effects on flow localization and failure in a bulk metallic glass, Acta Mater. 49, 2527 (2001).
    [24] J. W. Rudnicki, and J. R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids 23, 371 (1975).
    [25] F. Z. Li, and J. Pan, Plane-strain crack-tip fields for pressure-sensitive dilatant materials, J. Appl. Mech. 57, 40 (1990).
    [26] F. Z. Li, and J. Pan, Plane-stress crack-tip fields for pressure-sensitive dilatant materials, Eng. Fract. Mech. 35, 1105 (1990).
    [27] H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang, M. L. Sui, and E. Ma, Tensile ductility and necking of metallic glass, Nat. Mater. 6, 735 17704779(2007).
    [28] L. H. Dai, M. Yan, L. F. Liu, and Y. L. Bai, Adiabatic shear banding instability in bulk metallic glasses, Appl. Phys. Lett. 87, 141916 (2005).
    [29] Y. Chen, M. Q. Jiang, and L. H. Dai, Collective evolution dynamics of multiple shear bands in bulk metallic glasses, Int. J. Plast. 50, 18 (2013).
    [30] W. Jiang, G. Fan, F. Liu, G. Wang, H. Choo, and P. Liaw, Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass, Int. J. Plast. 24, 1 (2008).
    [31] K. W. Chen, and J. F. Lin, Investigation of the relationship between primary and secondary shear bands induced by indentation in bulk metallic glasses, Int. J. Plast. 26, 1645 (2010).
    [32] I. Singh, T. F. Guo, P. Murali, R. Narasimhan, Y. W. Zhang, and H. J. Gao, Cavitation in materials with distributed weak zones: Implications on the origin of brittle fracture in metallic glasses, J. Mech. Phys. Solids 61, 1047 (2013).
    [33] P. Murali, T. F. Guo, Y. W. Zhang, R. Narasimhan, Y. Li, and H. J. Gao, Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses, Phys. Rev. Lett. 107, 215501 22181893(2011).
    [34] I. Singh, T. F. Guo, R. Narasimhan, and Y. W. Zhang, Cavitation in brittle metallic glasses—Effects of stress state and distributed weak zones, Int. J. Solids Struct. 51, 4373 (2014).
    [35] B. A. Sun, and W. H. Wang, The fracture of bulk metallic glasses, Prog. Mater. Sci. 74, 211 (2015).
    [36] X. Huang, Z. Ling, and L. H. Dai, Ductile-to-brittle transition in spallation of metallic glasses, J. Appl. Phys. 116, 143503 (2014).
    [37] M. Q. Jiang, and L. H. Dai, On the origin of shear banding instability in metallic glasses, J. Mech. Phys. Solids 57, 1267 (2009).
    [38] D. Klaumünzer, R. Maaß, and J. F. Löffler, Stick-slip dynamics and recent insights into shear banding in metallic glasses, J. Mater. Res. 26, 1453 (2011).
    [39] R. Maaß, D. Klaumünzer, and J. F. Löffler, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass, Acta Mater. 59, 3205 (2011).
    [40] S. X. Song, H. Bei, J. Wadsworth, and T. G. Nieh, Flow serration in a Zr-based bulk metallic glass in compression at low strain rates, Intermetallics 16, 813 (2008).
    [41] S. X. Song, and T. G. Nieh, Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass, Intermetallics 17, 762 (2009).
    [42] Y. Q. Cheng, Z. Han, Y. Li, and E. Ma, Cold versus hot shear banding in bulk metallic glass, Phys. Rev. B 80, 134115 (2009).
    [43] Z. Han, W. F. Wu, Y. Li, Y. J. Wei, and H. J. Gao, An instability index of shear band for plasticity in metallic glasses, Acta Mater. 57, 1367 (2009).
    [44] L. F. Liu, L. H. Dai, Y. L. Bai, and B. C. Wei, Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings, J. Non-Crystal. Solids 351, 3259 (2005).
    [45] M. Q. Jiang, and L. H. Dai, Shear-band toughness of bulk metallic glasses, Acta Mater. 59, 4525 (2011).
    [46] Y. Chen, and L. H. Dai, Nature of crack-tip plastic zone in metallic glasses, Int. J. Plast. 77, 54 (2016).
    [47] K. M. Flores, and R. H. Dauskardt, Mode II fracture behavior of a Zr-based bulk metallic glass, J. Mech. Phys. Solids 54, 2418 (2006).
    [48] P. Tandaiya, R. Narasimhan, and U. Ramamurty, Mode I crack tip fields in amorphous materials with application to metallic glasses, Acta Mater. 55, 6541 (2007).
    [49] P. Tandaiya, U. Ramamurty, G. Ravichandran, and R. Narasimhan, Effect of Poisson's ratio on crack tip fields and fracture behavior of metallic glasses, Acta Mater. 56, 6077 (2008).
    [50] J. J. Lewandowski, W. H. Wang, and A. L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85, 77 (2005).
    [51] J. Schroers, and W. L. Johnson, Ductile bulk metallic glass, Phys. Rev. Lett. 93, 255506 15697909(2004).
    [52] Z. F. Zhang, and J. Eckert, Unified tensile fracture criterion, Phys. Rev. Lett. 94, 094301 15783967(2005).
    [53] R. T. Qu, J. Eckert, and Z. F. Zhang, Tensile fracture criterion of metallic glass, J. Appl. Phys. 109, 083544 (2011).
    [54] R. T. Qu, and Z. F. Zhang, A universal fracture criterion for high-strength materials, Sci. Rep. 3, 1117 (2013).
    [55] J. Xu, and E. Ma, Damage-tolerant Zr-Cu-Al-based bulk metallic glasses with record-breaking fracture toughness, J. Mater. Res. 29, 1489 (2014).
    [56] M. D. Demetriou, M. E. Launey, G. Garrett, J. P. Schramm, D. C. Hofmann, W. L. Johnson, and R. O. Ritchie, A damage-tolerant glass, Nat. Mater. 10, 123 21217693(2011).
    [57] Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Super plastic bulk metallic glasses at room temperature, Science 315, 1385 17347434(2007).
    [58] J. Pan, Y. P. Ivanov, W. H. Zhou, Y. Li, and A. L. Greer, Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass, Nature 578, 559 32103194(2020).
    [59] Y. Liu, T. H. Zhang, B. C. Wei, D. M. Xing, W. H. Li, and L. C. Zhang, Effect of structural relaxation on deformation behaviour of Zr-based metallic glass, Chin. Phys. Lett. 23, 1868 (2006).
    [60] J. Das, K. B. Kim, W. Xu, B. C. Wei, Z. F. Zhang, W. H. Wang, S. Yi, and J. Eckert, Ductile metallic glasses in supercooled martensitic alloys, Mater. Trans. 47, 2606 (2006).
    [61] T. Wang, J. Si, Y. Wu, K. Lv, Y. Liu, and X. Hui, Two-step work-hardening and its gigantic toughening effect in Zr-based bulk metallic glasses, Script. Mater. 150, 106 (2018).
    [62] L. F. Liu, L. H. Dai, Y. L. Bai, B. C. Wei, and J. Eckert, Behavior of multiple shear bands in Zr-based bulk metallic glass, Mater. Chem. Phys. 93, 174 (2005).
    [63] Z. F. Zhang, H. Zhang, X. F. Pan, J. Das, and J. Eckert, Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass, Philos. Mag. Lett. 85, 513 (2005).
    [64] C. A. Schuh, and A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass, Nat. Mater. 2, 449 12792648(2003).
    [65] C. H. Hsueh, H. Bei, C. T. Liu, P. F. Becher, and E. P. George, Shear fracture of bulk metallic glasses with controlled applied normal stresses, Script. Mater. 59, 111 (2008).
    [66] V. Keryvin, Indentation as a probe for pressure sensitivity of metallic glasses, J. Phys.-Condens. Matter 20, 114119 21694212(2008).
    [67] G. C. Rauch, and W. C. Leslie, The extent and nature of the strength-differential effect in steels, Metall. Trans. 3, 377 (1972).
    [68] H. Altenbach, G. B. Stoychev, and K. N. Tushtev, On elastoplastic deformation of grey cast iron, Int. J. Plast. 17, 719 (2001).
    [69] J. P. Hirth, M. Cohen, On the strength-Differential Phenomenon in Hardened steel, Metall. Trans. 1, 6 (1970)
    [70] D. C. Drucker, Plasticity theory strength-differential (SD) phenomenon, and volume expansion in metals and plastics, Metall. Trans. 4, 667 (1973).
    [71] L. A. Davis, and S. Kavesh, Deformation and fracture of an amorphous metallic alloy at high pressure, J Mater Sci 10, 453 (1975).
    [72] H. Kimura, T. Masumoto, Amorphous metallic alloys, in: F. E. Luborsky, ed. Amorphous Metallic Alloys, (Butterworths Co., London, 1983)
    [73] P. E. Donovan, A yield criterion for Pd404020, Acta Metall. 37, 445 (1989).
    [74] T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Effect of strain rate on compressive behavior of a Pd404020, Intermetallics 10, 1071 (2002).
    [75] T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Dynamic response of a Pd404020, Script. Mater. 46, 43 (2002).
    [76] J. J. Lewandowski, and P. Lowhaphandu, Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal, Philos. Mag. A 82, 3427 (2002).
    [77] A. V. Sergueeva, N. A. Mara, J. D. Kuntz, E. J. Lavernia, and A. K. Mukherjee, Shear band formation and ductility in bulk metallic glass, Philos. Mag. 85, 2671 (2005).
    [78] H. A. Bruck, T. Christman, A. J. Rosakis, and W. L. Johnson, Quasi-static constitutive behavior of Zr41.2513.751012.522.5, Script. Metall. Mater. 30, 429 (1994).
    [79] C. T. Liu, L. Heatherly, J. A. Horton, D. S. Easton, C. A. Carmichael, J. L. Wright, J. H. Schneibel, M. H. Yoo, C. H. Chen, and A. Inoue, Test environments and mechanical properties of Zr-base bulk amorphous alloys, Metall. Mat. Trans. A 29, 1811 (1998).
    [80] G. He, J. Lu, Z. Bian, D. Chen, and G. Chen, G. Tu, and G. Chen, Fracture morphology and quenched-in precipitates induced embrittlement in a Zr-base bulk glass, Mater. Trans. 42, 356 (2001).
    [81] Z. F. Zhang, J. Eckert, and L. Schultz, Fatigue and fracture behavior of bulk metallic glass, Metall. Mat. Trans. A 35, 3489 (2004).
    [82] T. Yoshikawa, M. Tokuda, and T. Inaba, Influence of thermoplastic deformation on mechanical properties of Zr-based bulk metallic glasses at room temperature, Int. J. Mech. Sci. 50, 888 (2008).
    [83] V. Keryvin, M. L. Vaillant, T. Rouxel, M. Huger, T. Gloriant, and Y. Kawamura, Thermal stability and crystallisation of a Zr5530105in situ, Intermetallics 10, 1289 (2002).
    [84] T. Hirano, H. Kato, A. Matsuo, Y. Kawamura, and A. Inoue, Synthesis and mechanical properties of Zr5510530in-situ, Mater. Trans. JIM 41, 1454 (2000).
    [85] F. Szuecs, C. P. Kim, and W. L. Johnson, Mechanical properties of Zr56.213.85.06.95.612.5, Acta Mater. 49, 1507 (2001).
    [86] R. D. Conner, Y. Li, W. D. Nix, and W. L. Johnson, Shear band spacing under bending of Zr-based metallic glass plates, Acta Mater. 52, 2429 (2004).
    [87] Z. F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59201083, Acta Mater. 51, 1167 (2003).
    [88] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48, 279 (2000).
    [89] A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater. 49, 2645 (2001).
    [90] T. Masumoto, and R. Maddin, The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state, Acta Metall. 19, 725 (1971).
    [91] A. Inoue, S. Sobu, D. V. Louzguine, H. Kimura, and K. Sasamori, Ultrahigh strength al-based amorphous alloys containing Sc, J. Mater. Res. 19, 1539 (2004).
    [92] M. L. Lee, Y. Li, and C. A. Schuh, Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites, Acta Mater. 52, 4121 (2004).
    [93] Z. F. Zhang, G. He, J. Eckert, and L. Schultz, Fracture Mechanisms in bulk metallic glassy materials, Phys. Rev. Lett. 91, 045505 12906675(2003).
    [94] J. Saida, and A. Inoue, Microstructure of tensile fracture in nanoicosahedral quasicrystal dispersed Zr8020, Script. Mater. 50, 1297 (2004).
    [95] M. Stoica, J. Eckert, S. Roth, Z. F. Zhang, L. Schultz, and W. H. Wang, Mechanical behavior of Fe65.54441255.5, Intermetallics 13, 764 (2005).
    [96] Q. He, J. K. Shang, E. Ma, and J. Xu, Crack-resistance curve of a Zr–Ti-Cu–Al bulk metallic glass with extraordinary fracture toughness, Acta Mater. 60, 4940 (2012).
    [97] X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, and J. J. Lewandowski, Fracture of brittle metallic glasses: Brittleness or plasticity, Phys. Rev. Lett. 94, 125510 15903937(2005).
    [98] G. Wang, Y. T. Wang, Y. H. Liu, M. X. Pan, D. Q. Zhao, and W. H. Wang, Evolution of nanoscale morphology on fracture surface of brittle metallic glass, Appl. Phys. Lett. 89, 121909 (2006).
    [99] R. O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10, 817 22020005(2011).
    [100] F. F. Wu, W. Zheng, S. D. Wu, Z. F. Zhang, and J. Shen, Shear stability of metallic glasses, Int. J. Plast. 27, 560 (2011).
    [101] C. Fan, H. Li, L. J. Kecskes, K. Tao, H. Choo, P. K. Liaw, and C. T. Liu, Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures, Phys. Rev. Lett. 96, 145506 16712094(2006).
    [102] J. X. Meng, Z. Ling, M. Q. Jiang, H. S. Zhang, and L. H. Dai, Dynamic fracture instability of tough bulk metallic glass, Appl. Phys. Lett. 92, 171909 (2008).
    [103] J. P. Escobedo, and Y. M. Gupta, Dynamic tensile response of Zr-based bulk amorphous alloys: Fracture morphologies and mechanisms, J. Appl. Phys. 107, 123502 (2010).
    [104] Z. F. Zhang, F. F. Wu, W. Gao, J. Tan, Z. G. Wang, M. Stoica, J. Das, J. Eckert, B. L. Shen, and A. Inoue, Wavy cleavage fracture of bulk metallic glass, Appl. Phys. Lett. 89, 251917 (2006).
    [105] M. Q. Jiang, J. X. Meng, J. B. Gao, X. L. Wang, T. Rouxel, V. Keryvin, Z. Ling, and L. H. Dai, Fractal in fracture of bulk metallic glass, Intermetallics 18, 2468 (2010).
    [106] G. Wang, D. Q. Zhao, H. Y. Bai, M. X. Pan, A. L. Xia, B. S. Han, X. K. Xi, Y. Wu, and W. H. Wang, Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses, Phys. Rev. Lett. 98, 235501 17677915(2007).
    [107] X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, and J. J. Lewandowski, Periodic corrugation on dynamic fracture surface in brittle bulk metallic glass, Appl. Phys. Lett. 89, 181911 (2006).
    [108] R. Huang, Z. Suo, J. H. Prevost, and W. D. Nix, Inhomogeneous deformation in metallic glasses, J. Mech. Phys. Solids 50, 1011 (2002).
    [109] G. Subhash, and H. Zhang, Shear band patterns in metallic glasses under static indentation, dynamic indentation, and scratch processes, Metall. Mat. Trans. A 38, 2936 (2007).
    [110] P. S. Steif, F. Spaepen, and J. W. Hutchinson, Strain localization in amorphous metals, Acta Metall. 30, 447 (1982).
    [111] B. Yang, M. L. Morrison, P. K. Liaw, R. A. Buchanan, G. Wang, C. T. Liu, and M. Denda, Dynamic evolution of nanoscale shear bands in a bulk-metallic glass, Appl. Phys. Lett. 86, 141904 (2005).
    [112] L. H. Dai, Shear banding in bulk metallic glasses, in: B. Dodd, Y. L. Bai, Eds. Adiabatic Shear Localization: Frontiers and Advances (Elsevier, London, 2012), pp. 311–361
    [113] J. W. Cui, R. T. Qu, F. F. Wu, Z. F. Zhang, B. L. Shen, M. Stoica, and J. Eckert, Shear band evolution during large plastic deformation of brittle and ductile metallic glasses, Philos. Mag. Lett. 90, 573 (2010).
    [114] U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay, Hardness and plastic deformation in a bulk metallic glass, Acta Mater. 53, 705 (2005).
    [115] W. L. Johnson, and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (TTg2/3, Phys. Rev. Lett. 95, 195501 16383993(2005).
    [116] L. Sun, M. Q. Jiang, and L. H. Dai, Intrinsic correlation between dilatation and pressure sensitivity of plastic flow in metallic glasses, Script. Mater. 63, 945 (2010).
    [117] B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, and W. H. Wang, Plasticity of ductile metallic glasses: A self-organized critical state, Phys. Rev. Lett. 105, 035501 20867777(2010).
    [118] F. Spaepen, Defects in amorphous metals, in: R. Balian, et al. eds. Les Houches Lectures XXXV on Physics of Defects, (North-Holland, Amsterdam, 1981), pp. 133–174
    [119] P. Zhao, J. Li, and Y. Wang, Heterogeneously randomized STZ model of metallic glasses: Softening and extreme value statistics during deformation, Int. J. Plast. 40, 1 (2013).
    [120] M. Chen, Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility, Annu. Rev. Mater. Res. 38, 445 (2008).
    [121] W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57, 487 (2012).
    [122] D. Pan, A. Inoue, T. Sakurai, and M. W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses, Proc. Natl. Acad. Sci. USA 105, 14769 18815377(2008).
    [123] C. Maloney, and A. Lemaître, Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow, Phys. Rev. Lett. 93, 016001 (2004).
    [124] A. Lemaître, and C. Caroli, Rate-dependent avalanche size in athermally sheared amorphous solids, Phys. Rev. Lett. 103, 065501 19792580(2009).
    [125] F. Jiang, M. Q. Jiang, H. F. Wang, Y. L. Zhao, L. He, and J. Sun, Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses, Acta Mater. 59, 2057 (2011).
    [126] D. Pan, Y. Yokoyama, T. Fujita, Y. H. Liu, S. Kohara, A. Inoue, and M. W. Chen, Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass, Appl. Phys. Lett. 95, 141909 (2009).
    [127] D. Şopu, A. Stukowski, M. Stoica, and S. Scudino, Atomic-level processes of shear band nucleation in metallic glasses, Phys. Rev. Lett. 119, 195503 29219492(2017).
    [128] Z. L. Tian, Y. J. Wang, Y. Chen, and L. H. Dai, Strain gradient drives shear banding in metallic glasses, Phys. Rev. B 96, 094103 (2017).
    [129] H. J. Leamy, T. T. Wang, and H. S. Chen, Plastic flow and fracture of metallic glass, Metall. Trans. 3, 699 (1972).
    [130] W. J. Wright, R. B. Schwarz, and W. D. Nix, Localized heating during serrated plastic flow in bulk metallic glasses, Mater. Sci. Eng.-A 319-321, 229 (2001).
    [131] C. A. Pampillo, and H. S. Chen, Comprehensive plastic deformation of a bulk metallic glass, Mater. Sci. Eng. 13, 181 (1974).
    [132] L. H. Dai, and Y. L. Bai, Basic mechanical behaviors and mechanics of shear banding in BMGs, Int. J. Impact Eng. 35, 704 (2008).
    [133] Q. Yang, A. Mota, and M. Ortiz, A finite-deformation constitutive model of bulk metallic glass plasticity, Comput. Mech. 37, 194 (2006).
    [134] P. Thamburaja, and R. Ekambaram, Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification, J. Mech. Phys. Solids 55, 1236 (2007).
    [135] D. D. E. Brennhaugen, K. Georgarakis, Y. Yokoyama, K. S. Nakayama, L. Arnberg, and R. E. Aune, Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature, Sci. Rep. 8, 16317 30397243(2018).
    [136] J. Fornell, A. Concustell, S. Suriñach, W. H. Li, N. Cuadrado, A. Gebert, M. D. Baró, and J. Sort, Yielding and intrinsic plasticity of Ti-Zr-Ni-Cu-Be bulk metallic glass, Int. J. Plast. 25, 1540 (2009).
    [137] R. T. Ott, F. Sansoz, T. Jiao, D. Warner, J. F. Molinari, K. T. Ramesh, T. C. Hufnagel, and C. Fan, Yield criteria and strain-rate behavior of Zr57.416.48.2810, Metall. Mat. Trans. A 37, 3251 (2006).
    [138] Y. F. Gao, L. Wang, H. Bei, and T. G. Nieh, On the shear-band direction in metallic glasses, Acta Mater. 59, 4159 (2011).
    [139] H. H. Ruan, L. C. Zhang, and J. Lu, A new constitutive model for shear banding instability in metallic glass, Int. J. Solids Struct. 48, 3112 (2011).
    [140] Y. Chen, and L. Dai, Onset and direction of shear banding instability in metallic glasses, J. Mater. Sci. Tech. 30, 616 (2014).
    [141] H. Neuhäuser, Rate of shear band formation in metallic glasses, Script. Metall. 12, 471 (1978).
    [142] W. J. Wright, M. W. Samale, T. C. Hufnagel, M. M. LeBlanc, and J. N. Florando, Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass, Acta Mater. 57, 4639 (2009).
    [143] A. Vinogradov, On shear band velocity and the detectability of acoustic emission in metallic glasses, Script. Mater. 63, 89 (2010).
    [144] S. Y. Jiang, M. Q. Jiang, L. H. Dai, and Y. G. Yao, Atomistic origin of rate-dependent serrated plastic flow in metallic glasses, Nanoscale Res. Lett. 3, 524 20596444(2008).
    [145] R. D. Conner, W. L. Johnson, N. E. Paton, and W. D. Nix, Shear bands and cracking of metallic glass plates in bending, J. Appl. Phys. 94, 904 (2003).
    [146] D. B. Miracle, A. Concustell, Y. Zhang, A. R. Yavari, and A. L. Greer, Shear bands in metallic glasses: Size effects on thermal profiles, Acta Mater. 59, 2831 (2011).
    [147] H. Zhang, S. Maiti, and G. Subhash, Evolution of shear bands in bulk metallic glasses under dynamic loading, J. Mech. Phys. Solids 56, 2171 (2008).
    [148] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature 451, 1085 18305540(2008).
    [149] J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, and J. Eckert, “Work-Hardenable” ductile bulk metallic glass, Phys. Rev. Lett. 94, 205501 16090260(2005).
    [150] K. F. Yao, F. Ruan, Y. Q. Yang, and N. Chen, Superductile bulk metallic glass, Appl. Phys. Lett. 88, 122106 (2006).
    [151] L. Y. Chen, Z. D. Fu, G. Q. Zhang, X. P. Hao, Q. K. Jiang, X. D. Wang, Q. P. Cao, H. Franz, Y. G. Liu, H. S. Xie, S. L. Zhang, B. Y. Wang, Y. W. Zeng, and J. Z. Jiang, New class of plastic bulk metallic glass, Phys. Rev. Lett. 100, 075501 18352567(2008).
    [152] C. C. Hays, C. P. Kim, and W. L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ, Phys. Rev. Lett. 84, 2901 11018971(2000).
    [153] Y. Chen, M. Q. Jiang, and L. H. Dai, How does the initial free volume distribution affect shear band formation in metallic glass?, Sci. China-Phys. Mech. Astron. 54, 1488 (2011).
    [154] X. Hui, S. N. Liu, S. J. Pang, L. C. Zhuo, T. Zhang, G. L. Chen, and Z. K. Liu, High-zirconium-based bulk metallic glasses with large plasticity, Script. Mater. 63, 239 (2010).
    [155] S. Xie, and E. P. George, Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing, Acta Mater. 56, 5202 (2008).
    [156] H. Zhang, X. Jing, G. Subhash, L. J. Kecskes, and R. J. Dowding, Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation, Acta Mater. 53, 3849 (2005).
    [157] A. Bharathula, S. W. Lee, W. J. Wright, and K. M. Flores, Compression testing of metallic glass at small length scales: Effects on deformation mode and stability, Acta Mater. 58, 5789 (2010).
    [158] D. E. Grady, and M. E. Kipp, The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids, J. Mech. Phys. Solids 35, 95 (1987).
    [159] D. E. Grady, Properties of an adiabatic shear-band process zone, J. Mech. Phys. Solids 40, 1197 (1992).
    [160] D. E. Grady, Adiabatic shear failure in brittle solids, Int. J. Impact Eng. 38, 661 (2011).
    [161] T. W. Wright, and H. Ockendon, A scaling law for the effect of inertia on the formation of adiabatic shear bands, Int. J. Plast. 12, 927 (1996).
    [162] Y. Wei, X. Lei, L. S. Huo, W. H. Wang, and A. L. Greer, Towards more uniform deformation in metallic glasses: The role of Poisson's ratio, Mater. Sci. Eng.-A 560, 510 (2013).
    [163] B. G. Yoo, J. Y. Kim, Y. J. Kim, I. C. Choi, S. Shim, T. Y. Tsui, H. Bei, U. Ramamurty, and J. Jang, Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency, Int. J. Plast. 37, 108 (2012).
    [164] C. A. Volkert, A. Donohue, and F. Spaepen, Effect of sample size on deformation in amorphous metals, J. Appl. Phys. 103, 083539 (2008).
    [165] J. R. Greer, and J. T. M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Prog. Mater. Sci. 56, 654 (2011).
    [166] G. Kumar, A. Desai, and J. Schroers, Bulk metallic glass: The smaller the better, Adv. Mater. 23, 461 20922805(2011).
    [167] D. Jang, and J. R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses, Nat. Mater. 9, 215 20139966(2010).
    [168] X. Zhou, H. Zhou, X. Li, and C. Chen, Size effects on tensile and compressive strengths in metallic glass nanowires, J. Mech. Phys. Solids 84, 130 (2015).
    [169] E. Bouchaud, D. Boivin, J. L. Pouchou, D. Bonamy, B. Poon, and G. Ravichandran, Fracture through cavitation in a metallic glass, Europhys. Lett. 83, 66006 (2008).
    [170] R. F. Bishop, R. Hill, and N. F. Mott, The theory of indentation and hardness tests, Proc. Phys. Soc. 57, 147 (1945).
    [171] P. Chadwick, The quasi-static expansion of a spherical cavity in metals and ideal soils, Q J Mech. Appl. Math. 12, 52 (1959).
    [172] D. Durban, and M. Baruch, On the problem of a spherical cavity in an infinite elasto-plastic medium, J. Appl. Mech. 43, 633 (1976).
    [173] Y. Huang, J. W. Hutchinson, and V. Tvergaard, Cavitation instabilities in elastic-plastic solids, J. Mech. Phys. Solids 39, 223 (1991).
    [174] P. Murali, R. Narasimhan, T. F. Guo, Y. W. Zhang, and H. J. Gao, Shear bands mediate cavitation in brittle metallic glasses, Script. Mater. 68, 567 (2013).
    [175] P. Guan, S. Lu, M. J. B. Spector, P. K. Valavala, and M. L. Falk, Cavitation in amorphous solids, Phys. Rev. Lett. 110, 185502 23683215(2013).
    [176] X. Huang, Z. Ling, Y. J. Wang, and L. H. Dai, Intrinsic structural defects on medium range in metallic glasses, Intermetallics 75, 36 (2016).
    [177] L. Q. Shen, J. H. Yu, X. C. Tang, B. A. Sun, Y. H. Liu, H. Y. Bai, and W. H. Wang, Observation of cavitation governing fracture in glasses, Sci. Adv. 7, eabf7293 33789905(2021).
    [178] X. Huang, Z. Ling, H. S. Zhang, J. Ma, and L. H. Dai, How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?, J. Appl. Phys. 110, 103519 (2011).
    [179] X. Huang, Z. Ling, and L. H. Dai, Cavitation instabilities in bulk metallic glasses, Int. J. Solids Struct. 50, 1364 (2013).
    [180] X. Huang, Z. Ling, and L. H. Dai, Influence of surface energy and thermal effects on cavitation instabilities in metallic glasses, Mech. Mater. 131, 113 (2019).
    [181] J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35, 379 (1968).
    [182] J. W. Hutchinson, Plastic stress and strain fields at a crack tip, J. Mech. Phys. Solids 16, 337 (1968).
    [183] J. R. Rice, and G. F. Rosengren, Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids 16, 1 (1968).
    [184] J. Pan, and C. F. Shih, Plane-stress crack-tip fields for power-law hardening orthotropic materials, Int. J. Fract. 37, 171 (1988).
    [185] J. Pan, and C. F. Shih, Plane-strain crack-tip fields for power-law hardening orthotropic materials, Mech. Mater. 5, 299 (1986).
    [186] J. W. Hutchinson, Constitutive behavior and crack tip fields for materials undergoing creep-constrained grain boundary cavitation, Acta Metall. 31, 1079 (1983).
    [187] H. Gao, and J. R. Rice, Shear stress intensity factors for a planar crack with slightly curved front, J. Appl. Mech. 53, 774 (1986).
    [188] N. R. F. Elfakhakhre, N. M. A. Nik Long, and Z. K. Eshkuvatov, Numerical solutions for cracks in an elastic half-plane, Acta Mech. Sin. 35, 212 (2018).
    [189] X. Ji, and F. Zhu, Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension, Acta Mech. Sin. 35, 828 (2019).
    [190] Z. E. Liu, and Y. Wei, An analytical solution to the stress fields of kinked cracks, J. Mech. Phys. Solids 156, 104619 (2021).
    [191] H. Y. Jeong, X. W. Li, A. F. Yee, and J. Pan, Slip lines in front of a round notch tip in a pressure-sensitive material, Mech. Mater. 19, 29 (1994).
    [192] S. Basu, and E. V. Giessen, A thermo-mechanical study of mode I, small-scale yielding crack-tip fields in glassy polymers, Int. J. Plast. 18, 1395 (2002).
    [193] H. Y. Subramanya, S. Viswanath, and R. Narasimhan, A three-dimensional numerical study of mode I crack tip fields in pressure sensitive plastic solids, Int. J. Solids Struct. 44, 1863 (2007).
    [194] P. Lowhaphandu, and J. J. Lewandowski, Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be, Script. Mater. 38, 1811 (1998).
    [195] L. Anand, and C. Su, A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses, J. Mech. Phys. Solids 53, 1362 (2005).
    [196] D. L. Henann, and L. Anand, Fracture of metallic glasses at notches: Effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness, Acta Mater. 57, 6057 (2009).
    [197] C. H. Rycroft, and E. Bouchbinder, Fracture toughness of metallic glasses: Annealing-induced embrittlement, Phys. Rev. Lett. 109, 194301 23215386(2012).
    [198] B. Ding, X. Li, X. Zhang, H. Wu, Z. Xu, and H. Gao, Brittle versus ductile fracture mechanism transition in amorphous lithiated silicon: From intrinsic nanoscale cavitation to shear banding, Nano Energy 18, 89 (2015).
    [199] J. R. Rice, and R. Thomson, Ductile versus brittle behaviour of crystals, Philos. Mag.-J. Theor. Exp. Appl. Phys. 29, 73 (1974).
    [200] A. Kelly, W. R. Tyson, and A. H. Cottrell, Ductile and brittle crystals, Philos. Mag.-J. Theor. Exp. Appl. Phys. 15, 567 (1967).
    [201] H. Gao, B. Ji, I. L. Jager, E. Arzt, and P. Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. USA 100, 5597 12732735(2003).
    [202] S. J. Poon, A. Zhu, and G. J. Shiflet, Poisson’s ratio and intrinsic plasticity of metallic glasses, Appl. Phys. Lett. 92, 261902 (2008).
    [203] A. C. Lund, and C. A. Schuh, Yield surface of a simulated metallic glass, Acta Mater. 51, 5399 (2003).
    [204] A. C. Lund, and C. A. Schuh, The Mohr-Coulomb criterion from unit shear processes in metallic glass, Intermetallics 12, 1159 (2004).
    [205] X. Lei, Y. Wei, B. Wei, and W. H. Wang, Spiral fracture in metallic glasses and its correlation with failure criterion, Acta Mater. 99, 206 (2015).
    [206] R. T. Qu, Z. J. Zhang, P. Zhang, Z. Q. Liu, and Z. F. Zhang, Generalized energy failure criterion, Sci. Rep. 6, 23359 26996781(2016).
    [207] Z. Q. Song, E. Ma, and J. Xu, Failure of Zr6122512, Intermetallics 86, 25 (2017).
    [208] B. Ding, and X. Li, An eccentric ellipse failure criterion for amorphous materials, J. Appl. Mech. 84, 081005 (2017).
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  36
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-12-02
  • 网络出版日期:  2022-12-05
  • 发布日期:  2022-02-23
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回