留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study

CAI Bao-ping ZHANG Yan-ping YUAN Xiao-bing GAO Chun-tan LIU Yong-hong CHEN Guo-ming LIU Zeng-kai JI Ren-jie

CAI Bao-ping, ZHANG Yan-ping, YUAN Xiao-bing, GAO Chun-tan, LIU Yong-hong, CHEN Guo-ming, LIU Zeng-kai, JI Ren-jie. A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 597-607. doi: 10.1007/s13344-020-0054-0
Citation: CAI Bao-ping, ZHANG Yan-ping, YUAN Xiao-bing, GAO Chun-tan, LIU Yong-hong, CHEN Guo-ming, LIU Zeng-kai, JI Ren-jie. A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 597-607. doi: 10.1007/s13344-020-0054-0

A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study

doi: 10.1007/s13344-020-0054-0
More Information
  • Figure  1.  Resilience assessment methodology of structure systems.

    Figure  2.  System state transition laws: (a) two-state transition; (b) three-state transition.

    Figure  3.  Structure model of the DBNs model.

    Figure  4.  Resilience calculation model.

    Figure  5.  Structural model of the earthquake.

    Figure  6.  Structural model of the corrosion.

    Figure  7.  Structural model of the sand erosion.

    Figure  8.  DBNs for degradation process.

    Figure  9.  Crack depth probability distribution during the degradation process.

    Figure  10.  Crack depth probability distribution during the recovery process.

    Figure  11.  Crack changing trends with different earthquake strengths.

    Figure  12.  RUL changing trends with different earthquake strengths.

    Figure  13.  Structure resilience with different earthquake strengths.

    Figure  14.  Crack changing trends with different initial crack depths.

    Figure  15.  RUL changing trends with different initial crack depths.

    Figure  16.  Structure resilience with different initial crack depths.

    Figure  17.  Crack changing trends for different pipeline parts.

    Figure  18.  RUL changing trends for different pipeline parts.

    Figure  19.  Structure resilience for different pipeline parts.

    Figure  20.  Parameters sensitivity analysis results, (a) 1st hour (b) 20th hour (c) 40th hour.

    Table  1.   Parameters of the earthquake model

    Parameter Distribution Mean Standard deviation
    D0 (mm) Exponential 0.15 2
    M Normal 2.5 0.2
    K Lognormal 2.5 0.36
    $ {\textit{λ}}$ Deterministic 0.8
    下载: 导出CSV

    Table  2.   Parameters of the corrosion model

    Parameter Value Probability
    (%)
    Value Probability
    (%)
    Value Probability
    (%)
    t (°C) 20 30 22.5 40 25 30
    U (m/s) 1 20 2 50 3 30
    d (mm) 40 23.3 50.8 56.2 65 20.5
    下载: 导出CSV

    Table  3.   Parameters of the sand erosion model

    Parameter Value Probability
    (%)
    Value Probability
    (%)
    Value Probability
    (%)
    Vp (m/s) 1 20 2 50 3 30
    $ {\textit{θ}}$ (rad) 0.5 30 0.5235 40 0.55 30
    下载: 导出CSV
  • [1] Abimbola, M. and Khan, F., 2019. Resilience modeling of engineering systems using dynamic object-oriented Bayesian network approach, Computers & Industrial Engineering, 130, 108–118.
    [2] Cai, B.P., Liu, Y.H., Liu, Z.K., Tian, X.J., Dong, X. and Yu, S.L., 2012. Using Bayesian networks in reliability evaluation for subsea blowout preventer control system, Reliability Engineering & System Safety, 108, 32–41.
    [3] Cai, B.P., Shao, X.Y., Liu, Y.H., Kong, X.D., Wang, H.F., Xu, H.Q. and Ge, W.F., 2020. Remaining useful life estimation of structure systems under the influence of multiple causes: Subsea pipelines as a case study, IEEE Transactions on Industrial Electronics, 67(7), 5737–5747. doi: 10.1109/TIE.2019.2931491
    [4] Cai, B.P., Xie, M., Liu, Y.H., Liu, Y.L. and Feng, Q., 2018. Availability-based engineering resilience metric and its corresponding evaluation methodology, Reliability Engineering & System Safety, 172, 216–224.
    [5] De Waard, C., Lotz, U. and Milliams, D.E., 1991. Predictive model for CO2 corrosion engineering in wet natural gas pipelines, Corrosion, 47(12), 976–985. doi: 10.5006/1.3585212
    [6] Dhulipala, S.L.N. and Flint, M.M., 2020. Series of semi-Markov processes to model infrastructure resilience under multihazards, Reliability Engineering & System Safety, 193, 106659.
    [7] Feng, Q., Zhao, X.J., Fan, D.M., Cai, B.P., Liu, Y.Q. and Ren, Y., 2019. Resilience design method based on meta-structure: A case study of offshore wind farm, Reliability Engineering & System Safety, 186, 232–244.
    [8] Francis, R. and Bekera, B., 2014. A metric and frameworks for resilience analysis of engineered and infrastructure systems, Reliability Engineering & System Safety, 121, 90–103.
    [9] Fu, J.J. and Khan, F., 2019. Operational failure model for semi-submersible mobile units in harsh environments, Ocean Engineering, 191, 106332. doi: 10.1016/j.oceaneng.2019.106332
    [10] Henry, D. and Emmanuel Ramirez-Marquez, J., 2012. Generic metrics and quantitative approaches for system resilience as a function of time, Reliability Engineering & System Safety, 99, 114–122.
    [11] Hosseini, S. and Barker, K., 2016. Modeling infrastructure resilience using Bayesian networks: A case study of inland waterway ports, Computers & Industrial Engineering, 93, 252–266.
    [12] John, A., Yang, Z.L., Riahi, R. and Wang, J., 2016. A risk assessment approach to improve the resilience of a seaport system using Bayesian networks, Ocean Engineering, 111, 136–147. doi: 10.1016/j.oceaneng.2015.10.048
    [13] Lin, S.Y. and El-Tawil, S., 2020. Time-dependent resilience assessment of seismic damage and restoration of interdependent lifeline systems, Journal of Infrastructure Systems, 26(1), 04019040. doi: 10.1061/(ASCE)IS.1943-555X.0000522
    [14] Luque, J. and Straub, D., 2016. Reliability analysis and updating of deteriorating systems with dynamic Bayesian networks, Structural Safety, 62, 34–46. doi: 10.1016/j.strusafe.2016.03.004
    [15] MacKenzie, C.A. and Hu, C., 2019. Decision making under uncertainty for design of resilient engineered systems, Reliability Engineering & System Safety, 192, 106171.
    [16] Mazumder, R.K., Salman, A.M., Li, Y. and Yu, X., 2020. Seismic functionality and resilience analysis of water distribution systems, Journal of Pipeline Systems Engineering and Practice, 11(1). doi: 10.1061/(ASCE)PS.1949-1204.0000418
    [17] Nešić, S., Nordsveen, M., Nyborg, R. and Stangeland, A., 2003. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films - Part 2: A numerical experiment, Corrosion, 59(6), 489–497. doi: 10.5006/1.3277579
    [18] Rebello, S., Yu, H.Y. and Ma, L., 2018. An integrated approach for system functional reliability assessment using dynamic Bayesian Network and hidden Markov model, Reliability Engineering & System Safety, 180, 124–135.
    [19] Shirali, G.A., Mohammadfam, I. and Ebrahimipour, V., 2013. A new method for quantitative assessment of resilience engineering by PCA and NT approach: a case study in a process industry, Reliability Engineering & System Safety, 119, 88–94.
    [20] Specking, E., Cottam, B., Parnell, G., Pohl, E., Cilli, M., Buchanan, R., Wade, Z. and Small, C., 2019. Assessing engineering resilience for systems with multiple performance measures, Risk Analysis, 39(9), 1899–1912. doi: 10.1111/risa.13395
    [21] Straub, D., 2009. Stochastic modeling of deterioration processes through dynamic Bayesian networks, Journal of Engineering Mechanics, 135(10), 1089–1099. doi: 10.1061/(ASCE)EM.1943-7889.0000024
    [22] Vieira, R. E., Mansouri, A., McLaury, B.S. and Shirazi S.A., 2016. Experimental and computational study of erosion in elbows due to sand particles in air flow, Powder Technology, 288, 339–353. doi: 10.1016/j.powtec.2015.11.028
    [23] Yang, Y.S., Khan, F., Thodi, P. and Abbassi, R., 2017. Corrosion induced failure analysis of subsea pipelines, Reliability Engineering & System Safety, 159, 214–222.
    [24] Yodo, N., Wang, P.F. and Rafi, M., 2018. Enabling resilience of complex engineered systems using control theory, IEEE Transactions on Reliability, 67(1), 53–65. doi: 10.1109/TR.2017.2746754
    [25] Zhang, Y.H., Li, Y.Y. and Kennedy, D., 2019. An uncertain computational model for random vibration analysis of subsea pipelines subjected to spatially varying ground motions, Engineering Structures, 183, 550–561. doi: 10.1016/j.engstruct.2019.01.031
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  105
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-20
  • 录用日期:  2020-06-12
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回