留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses

MENG Long HE Yan-ping ZHAO Yong-sheng YANG Jie YANG He HAN Zhao-long YU Long MAO Wen-gang DU Wei-kang

MENG Long, HE Yan-ping, ZHAO Yong-sheng, YANG Jie, YANG He, HAN Zhao-long, YU Long, MAO Wen-gang, DU Wei-kang. Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 608-620. doi: 10.1007/s13344-020-0055-z
Citation: MENG Long, HE Yan-ping, ZHAO Yong-sheng, YANG Jie, YANG He, HAN Zhao-long, YU Long, MAO Wen-gang, DU Wei-kang. Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 608-620. doi: 10.1007/s13344-020-0055-z

Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses

doi: 10.1007/s13344-020-0055-z
  • Figure  1.  Types of FOWT according to the principle of stability.

    Figure  2.  Schematic of 6MW Spar type FOWT.

    Figure  3.  Model blade based on the thrust similarity.

    Figure  4.  Schematic diagram of nacelle model.

    Figure  5.  Manufacturing production of nacelle model.

    Figure  6.  Model tower with the length of 1.28 m.

    Figure  7.  Wind generation device with the form of 4×4 arrangement.

    Figure  8.  Double plate multi-unit wave generation system (Meng et al., 2017b).

    Figure  9.  SERIES EE65 hot film wind speed transmitter.

    Figure  10.  ZJ-0.5AM type torque measurement system.

    Figure  11.  Instrument calibration.

    Figure  12.  COG adjustment of 6MW Spar type FOWT model system.

    Figure  13.  Basin test of 6MW Spar type FOWT model system.

    Figure  14.  Comparison of surge restoring loads between experimental and numerical results under different surge displacements.

    Figure  15.  Decay results comparison between experimental results and calculation values in still water.

    Figure  16.  Distribution of wind speed and turbulence intensity.

    Figure  17.  Comparison of rotor thrust mean values between calculated and experimental results under wind-induced tests.

    Figure  18.  Comparisons of wave spectrum between the target and measured results under extreme condition

    Figure  19.  Comparison of surge, pitch and heave motion between test results and calculation values under wave-induced only conditions.

    Figure  20.  Comparison of Spar type platform surge motion between test results and calculation values under combined wind, wave and current testing conditions.

    Figure  22.  Comparison of Spar type platform heave motion between test results and calculation values under combined wind, wave and current testing conditions.

    Figure  21.  Comparison of Spar type platform pitch motion between test results and calculation values under combined wind, wave and current testing conditions.

    Figure  23.  Comparisons of motion spectra between the model tests and wave-3 test condition and LC3 test condition.

    Table  1.   6MW Spar type FOWT system performance parameters

    Components Item Unit Value
    Prototype values Model values
    Wind turbine Blade length m 78 1.2
    Hub radius m 2.35 0.036
    Cut-in wind speed m/s 3 0.37
    Cut-out wind speed m/s 25 3.09
    Rated wind speed m/s 10.5 1.3
    Rated rotor speed rpm 10 80.81
    Hub center height m 100 1.53
    Tower Tower top diameter m 4.8 0.07
    Tower top above waterline m 96.8 1.48
    Tower bottom diameter m 8 0.12
    Tower bottom above waterline m 13 0.20
    Spar type platform Design water depth m 100 1.53
    Design draft m 76 1.16
    Platform length m 89 1.36
    Platform COG (Center of Gravity) (including ballast) m −62.3 −0.95
    Platform COB (Center of Buoyancy) m −41.2 −0.63
    Diameter at waterline m 9.5 0.15
    Drainage volume m3 11421 0.04
    Moment of inertia (Ixx) kg·m2 2.5×109 2.11
    Moment of inertia (Iyy) kg·m2 2.5×109 2.11
    Moment of inertia (Izz) kg·m2 2.5×108 0.21
    Mooring system Number of the catenary 3 3
    Angle between catenary ° 120 120
    Total length of catenary m 400 6.13
    Equivalent cross-sectional diameter mm 130 1.99
    Weight per meter in water N/m 3495 0.8
    The horizontal distance between mooring point and platform center line m 385.5 5.9
    Equivalent stiffness kN 801692.19 2.88
    Fairlead position m −21 −0.32
    下载: 导出CSV

    Table  2.   Conversion relationship between model and prototype

    Item Symbol Scale ratio Item Symbol Scale ratio
    Line scale Ls/Lm ${\textit{λ}} $ Angular velocity ${{{{\textit{φ}} '_{\rm{s}}}} / {{{\textit{φ}} '_{\rm{m}}}}}$ ${{\textit{λ}} ^{ - 1/2}}$
    Line speed Vs/Vm ${{\textit{λ}} ^{1/2}}$ Period scale Ts/Tm ${{\textit{λ}} ^{1/2}}$
    Line acceleration as/am 1 Frequency scale fs/fm ${{\textit{λ}} ^{ - 1/2}}$
    Angle scale ${{{{\textit{φ}} _{\rm{s}}}} / {{{\textit{φ}} _{\rm{m}}}}}$ 1 Wave force Fs/Fm ${\textit{γ}} {{\textit{λ}} ^3}$
    Area scale As/Am ${{\textit{λ}} ^2}$ Wave moment Ms/Mm ${\textit{γ}} {{\textit{λ}} ^4}$
    Volume scale ${{{\nabla _{\rm{s}}}} / {{\nabla _{\rm{m}}}}}$ ${{\textit{λ}} ^3}$ Thrust scale Fs/Fm ${{\textit{λ}} ^3}$
    Water density ${{{{\textit{ρ}} _{\rm{s}}}} / {{{\textit{ρ}} _{\rm{m}}}}}$ ${\textit{γ}} $ Torque scale Ms/Mm ${{\textit{λ}} ^4}$
    Quality (displacement) ${{{{\rm{\Delta }}_{\rm{s}}}} / {{{\rm{\Delta }}_{\rm{m}}}}}$ ${\textit{γ}} {{\textit{λ}} ^3}$ Power scale Ps/Pm ${{\textit{λ}} ^{7/2}}$
    下载: 导出CSV

    Table  3.   Wind-induced only test conditions

    Conditions Mean wind speed (m/s) Rotor speed (rpm) Blade pitch (°) Description
    Prototype Model Prototype Model
    Wind-1 8 0.990 9.2 74.344 −3 Below rated wind speed
    Wind-2 10.5 1.299 10 80.808 0 Rated wind speed
    Wind-3 25 3.094 10 80.808 15 Cut-out wind speed
    下载: 导出CSV

    Table  4.   Wave-induced only test conditions

    Load cases Significant wave height (m) Peak period (s) Spectral parameter $ {\textit{γ}} $ Description
    Prototype Model Prototype Model
    Wave-1 2.5 0.038 9.8 1.213 1.0 Sea state corresponding to below rated wind speed
    Wave-2 3 0.046 10.0 1.237 1.0 Sea state corresponding to rated wind speed
    Wave-3 5.9 0.090 11.3 1.398 1.0 Sea state corresponding to cut-out rated wind speed
    Wave-4 14.4 0.221 13.3 1.646 2.4 Sea state corresponding to wind speed of 50 years a period
    下载: 导出CSV

    Table  5.   Combined wind, wave and current tests conditions

    Load cases Wind load Wave load Current velocity (m/s) Inflow direction (°) Description
    Prototype Model
    LC1 Wind-1 Wave-1 0.6 0.074 0 Sea state corresponding to below rated wind speed
    LC2 Wind-2 Wave-2 0.6 0.074 0 Sea state corresponding to rated wind speed
    LC3 Wind-3 Wave-3 0.6 0.074 0 Sea state corresponding to cut-out rated wind speed
    LC4 No wind Wave-4 2.0 0.247 0 Sea state corresponding to wind speed of 50 years a period
    下载: 导出CSV

    Table  6.   Still water decay results

    Motions Natural period Td (s)
    Test results Calculation values
    Surge 73.4 73.1
    Pitch 41.1 42.4
    Heave 25.9 25.1
    下载: 导出CSV
  • [1] Cai, J.F. and Zhang, Y., 2012. Differences of Kaimal and von Karman turbulence spectrum model in wind turbine load calculation, Wind Energy, (3), 80–84. (in Chinese)
    [2] Cermelli, C., Roddier, D. and Aubault, A., 2009. WindFloat: a floating foundation for offshore wind turbines-Part II: Hydrodynamics analysis, Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA.
    [3] Chaviaropoulos, P.K. and Hansen, M.O.L., 2000. Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver, Journal of Fluids Engineering, 122(2), 330–336. doi: 10.1115/1.483261
    [4] Contestabile, P., Ferrante, V. and Vicinanza, D., 2015. Wave energy resource along the coast of Santa Catarina (Brazil), Energies, 8(12), 14219–14243. doi: 10.3390/en81212423
    [5] De Ridder, E.J., Otto, W., Zondervan, G.J., Huijs, F. and Vaz, G., 2014. Development of a scaled-down floating wind turbine for offshore basin testing, Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA.
    [6] Det Norske Veritas (DNV), 2016. Support Structures for Wind Turbines, DNVGL-ST-0126, Standard Offshore, Det Norske Veritas, Oslo, Norway.
    [7] Duan, F., Hu, Z.Q. and Niedzwecki, J.M., 2016. Model test investigation of a spar floating wind turbine, Marine Structures, 49, 76–96. doi: 10.1016/j.marstruc.2016.05.011
    [8] Global Wind Statistics 2016, GWEC. http://www.gwec.net/.
    [9] Hua, X., Gu, R., Jin, J.F., Liu, Y.R., Ma, Y., Cong, Q. and Zhang, Y., 2010. Numerical simulation and aerodynamic performance comparison between seagull aerofoil and NACA 4412 aerofoil under low-Reynolds, Advances in Natural Science, 3(2), 244–250.
    [10] Iuppa, C., Cavallaro, L., Foti, E. and Vicinanza, D., 2015. Potential wave energy production by different wave energy converters around Sicily, Journal of Renewable and Sustainable Energy, 7(6), 061701. doi: 10.1063/1.4936397
    [11] Jain, A., Goupee, A.J., Robertson, A.N., Kimball, R.W., Jonkman, J.M. and Swift, A.H.P., 2012. FAST code verification of scaling laws for DeepCwind floating wind system, Proceedings of 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece.
    [12] Jeon, M., Lee, S. and Lee, S., 2014. Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method, Renewable Energy, 65, 207–212. doi: 10.1016/j.renene.2013.09.009
    [13] Jonkman, J.M., 2007. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, National Renewable Energy Laboratory, USA.
    [14] Jonkman, J., 2010. Definition of the Floating System for Phase IV of OC3, National Renewable Energy Laboratory, USA.
    [15] Jonkman, J.M. and Kilcher, L., 2012. TurbSim User's Guide, Version 1.06.00, National Renewable Energy Laboratory, USA.
    [16] Karimirad, M., 2011. Stochastic Dynamic Response Analysis of Spar-Type Wind Turbines with Catenary or Taut Mooring Systems, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim.
    [17] Karimirad, M. and Moan, T., 2012a. A simplified method for coupled analysis of floating offshore wind turbines, Marine Structures, 27(1), 45–63. doi: 10.1016/j.marstruc.2012.03.003
    [18] Karimirad, M. and Moan, T., 2012b. Wave- and wind-induced dynamic response of a Spar-type offshore wind turbine, Journal of Waterway,Port,Coastal,and Ocean Engineering, 138(1), 9–20. doi: 10.1061/(ASCE)WW.1943-5460.0000087
    [19] Kvittema, M.I., Bachynski, E.E. and Moan, T., 2012. Effects of hydrodynamic modelling in fully coupled simulations of a semi-submersible wind turbine, Energy Procedia, 24, 351–362. doi: 10.1016/j.egypro.2012.06.118
    [20] Marino, E., Giusti, A. and Manuel, L., 2017. Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds, Renewable Energy, 102, 157–169. doi: 10.1016/j.renene.2016.10.023
    [21] Martin, H.R., 2011. Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems, MSc. Thesis, The University of Maine, Orono, ME.
    [22] Matha, D., 2010. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts, National Renewable Energy Laboratory, USA.
    [23] Meng, L., He, Y.P., Liu, Y.D., Zhao, Y.S., Tong, J. and Yu, L., 2018. Numerical study on influence of turbulent and steady winds on coupled dynamic response of 6-MW Spar-type FOWT, Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan.
    [24] Meng, L., He, Y.P., Zhao, Y.S., Peng, T. and Kou Y.F., 2017b. Research and practice of offshore wind turbine model test platform and technology, Scientia Sinica Physica,Mechanica and Astronomica, 47(10), 104701. doi: 10.1360/SSPMA2017-00067
    [25] Meng, L., He, Y.P., Zhao, Y.S., Peng, T. and Yang, J., 2019. Experimental study on aerodynamic characteristics of the model wind rotor system and on characterization of a wind generation system, China Ocean Engineering, 33(2), 137–147. doi: 10.1007/s13344-019-0014-8
    [26] Meng, L., Zhou, T., He, Y.P., Zhao, Y.S. and Liu, Y.D., 2017a. Concept design and coupled dynamic response analysis on 6-MW Spar-type floating offshore wind turbine, China Ocean Engineering, 31(5), 567–577. doi: 10.1007/s13344-017-0065-7
    [27] Moriarty, P.J., Holley, W.E. and Butterfield, S., 2002. Effect of turbulence variation on extreme loads prediction for wind turbines, Journal of Solar Energy Engineering, 124(4), 387–395. doi: 10.1115/1.1510137
    [28] Namik, H. and Stol, K., 2010. Individual blade pitch control of floating offshore wind turbines, Wind Energy, 13(1), 74–85. doi: 10.1002/we.332
    [29] Nejad, A.R., Bachynski, E.E., Kvittem, M.I., Luan, C.Y., Gao, Z. and Moan, T., 2015. Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP. Spar and semi-submersible floating wind turbines, Marine Structures, 42, 137–153. doi: 10.1016/j.marstruc.2015.03.006
    [30] Nielsen, F.G., Hanson, T.D. and Skaare, B., 2006. Integrated dynamic analysis of floating offshore wind turbines, Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany.
    [31] Quallen, S., Xing, T., Carrica, P., Li, Y.W. and Xu, J., 2013. CFD simulation of a floating offshore wind turbine system using a quasi-static crowfoot mooring-line model, Proceedings of the 23rd International Offshore and Polar Engineering Conference, Anchorage, Alaska.
    [32] Sahu, B.K., 2018. Wind energy developments and policies in China: A short review, Renewable and Sustainable Energy Reviews, 81, 1393–1405. doi: 10.1016/j.rser.2017.05.183
    [33] Salehyar, S. and Zhu, Q., 2015. Aerodynamic dissipation effects on the rotating blades of floating wind turbines, Renewable Energy, 78, 119–127. doi: 10.1016/j.renene.2015.01.013
    [34] Skaare, B., 2017. Development of the Hywind concept, Proceedings of ASME 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway.
    [35] Skaare, B., Hanson, T.D., Nielsen, F.G., Yttervik, R., Hansen, A.M., Thomsen, K. and Larsen, T.J., 2007. Integrated dynamic analysis of floating offshore wind turbines, Proceedings of the European Wind Energy Conference and Exhibition (EWEC), Milan, Italy.
    [36] Soukissian, T., Karathanasi, F. and Axaopoulos, P., 2017. Satellite-based offshore wind resource assessment in the mediterranean sea, IEEE Journal of Oceanic Engineering, 42(1), 73–86. doi: 10.1109/JOE.2016.2565018
    [37] Stewart, G.M., Lackner, M.A., Robertson, A., Jonkman, J. and Goupee, A.J., 2012. Calibration and validation of a FAST floating wind turbine model of the deepCwind scaled tension-leg platform, Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece.
    [38] Tomasicchio, G.R., Avossa, A.M., Riefolo, L., Ricciardelli, F., Musci, E., D’Alessandro, F. and Vicinanza, D., 2017. Dynamic modelling of a Spar buoy wind turbine, Proceedings of the 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway.
    [39] Tomasicchio, G.R., D'Alessandro, F., Avossa, A.M., Riefolo, L., Musci, E., Ricciardelli, F. and Vicinanza, D., 2018. Experimental modelling of the dynamic behaviour of a Spar buoy wind turbine, Renewable Energy, 127, 412–432. doi: 10.1016/j.renene.2018.04.061
    [40] Tran, T.T. and Kim, D.H., 2015. The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions, Journal of Mechanical Science and Technology, 29(2), 549–561. doi: 10.1007/s12206-015-0115-0
    [41] Tsugane, M., 2005. A study on ship’s drifting in wind and wave, The Journal of Japan Institute of Navigation, 112, 133–140. (in Japanese doi: 10.9749/jin.112.133
    [42] Uihlein, A. and Magagna, D., 2016. Wave and tidal current energy - A review of the current state of research beyond technology, Renewable and Sustainable Energy Reviews, 58, 1070–1081. doi: 10.1016/j.rser.2015.12.284
    [43] Utsunomiya, T., Nishida, E. and Sato, I., 2009. Wave response experiment on Spar-type floating bodies for offshore wind turbine, Proceedings of the 19th International Offshore and Polar Engineering Conference, Osaka, Japan.
    [44] Wang, L. and Sweetman, B., 2013. Multibody dynamics of floating wind turbines with large-amplitude motion, Applied Ocean Research, 43, 1–10. doi: 10.1016/j.apor.2013.06.004
    [45] Wen, B.R., Dong, X.J., Tian, X.L., Peng, Z.K., Zhang, W.M. and Wei, K.X., 2018. The power performance of an offshore floating wind turbine in platform pitching motion, Energy, 154, 508–521. doi: 10.1016/j.energy.2018.04.140
    [46] Zhao, Y.S., She, X.H., He, Y.P., Yang, J.M., Peng, T. and Kou, Y.F., 2018. Experimental study on new multi-column tension-leg-type floating wind turbine, China Ocean Engineering, 32(2), 123–131. doi: 10.1007/s13344-018-0014-0
    [47] Zhao, Y.S., Yang, J.M., He, Y.P. and Gu, M.T., 2016a. Dynamic response analysis of a multi-column tension-leg-type floating wind turbine under combined wind and wave loading, Journal of Shanghai Jiaotong University(Science) , 21(1), 103–111. doi: 10.1007/s12204-015-1689-5
    [48] Zhao, Y.S., Yang, J.M., He, Y.P. and Gu, M.T., 2016b. Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine, China Ocean Engineering, 30(4), 505–520. doi: 10.1007/s13344-016-0031-9
  • 加载中
图(23) / 表(6)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  81
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-26
  • 修回日期:  2020-04-23
  • 录用日期:  2020-05-24
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回