留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance of X-Section Concrete Pile Group in Coral Sand Under Vertical Loading

PENG Yu LIU Jia-yi DING Xuan-ming FANG Hua-qiang JIANG Chun-yong

PENG Yu, LIU Jia-yi, DING Xuan-ming, FANG Hua-qiang, JIANG Chun-yong. Performance of X-Section Concrete Pile Group in Coral Sand Under Vertical Loading[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 621-630. doi: 10.1007/s13344-020-0056-y
Citation: PENG Yu, LIU Jia-yi, DING Xuan-ming, FANG Hua-qiang, JIANG Chun-yong. Performance of X-Section Concrete Pile Group in Coral Sand Under Vertical Loading[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 621-630. doi: 10.1007/s13344-020-0056-y

Performance of X-Section Concrete Pile Group in Coral Sand Under Vertical Loading

doi: 10.1007/s13344-020-0056-y
More Information
  • Figure  1.  Layout of piles and apparatus in model test.

    Figure  2.  Fabrication of the X-section model pile.

    Figure  3.  Contrast of PS curves between circular and X-section piles.

    Figure  4.  Distributions of axial forces.

    Figure  5.  Comparison of distribution of axial forces under different loads.

    Figure  6.  Distribution of skin friction.

    Figure  7.  Comparison of distribution of skin friction under different loads.

    Figure  8.  Load-sharing ratio of side resistance and tip resistance.

    Figure  9.  Distributions of (a) axial force and (b) side friction along depth of piles.

    Figure  10.  Load-sharing ratio of side resistance and tip resistance in the 4-pile group.

    Figure  11.  Comparison of load-displacement curves between numerical simulation and model test.

    Figure  12.  Distributions of (a) axial force, (b) side friction between numerical simulation and model test.

    Figure  13.  Comparative axial forces of (a) corner pile, (b) side pile, and (c) core pile under the raft.

    Figure  14.  Relationships between axial force and vertical load in stimulation of corner, side, and core piles under several typical depths.

    Figure  15.  Comparative side frictions of (a) corner pile, (b) side pile, and (c) core pile under the raft.

    Figure  16.  Relationships between skin friction and settlement of (a) corner pile, (b) side pile, and (c) core pile.

    Figure  17.  Relationship between load sharing and vertical load of piles under different locations under the raft.

    Table  1.   Basic parameters of coral sand used in this test

    Ground soil Coral sand Silica sand
    Proportion, Gs 2.74 2.65
    Maximum dry density, $ {\textit{ρ}}_{\rm{max}}$ (g/cm3) 1.70 1.68
    Minimum dry density, $ {\textit{ρ}}_{\rm{min}}$ (g/cm3) 1.08 1.42
    Depth, z (cm) 70 70
    Cohesion, Ccu (kPa) 0 0
    Friction angle, wcu (°) 35 34
    Uniformity coefficient, Cu 2.42 1.22
    Curvature coefficient, Cc 1.02 0.97
    Moisture content, v (%) 0 0
    Relative density 0.68 0.71
    下载: 导出CSV

    Table  2.   Parameters used in numerical simulation models

    Materials Constitutive model Modulus, E
    (MPa)
    Poisson’s ratio, $ {\textit{ʋ}}$ Cohesion, ccu (kPa) Friction angle, $ {\textit{φ}}_{\rm{cu}}$ (º) Unit weight, $ {\textit{γ}}$ (kN/m3) Lateral coefficient, K0
    Pile Elastic 30000 0.20 24.50 1
    Pile raft Elastic 206000 0.25 76.44 1
    Soil Mohr-Coulomb 40 0.30 0 34 16.17 0.48
    Contact surface Coulomb sliding 0 28
    下载: 导出CSV
  • [1] Chen, Y.H., Wang, X.Q., Liu, H.L., Jiang, L. and Zhang, T., 2009. In-Situ study on stress distribution of foundation improved by Y-section pile, International Symposium on Ground Improvement Technologies and Case Histories, ISGI, pp. 319–330.
    [2] Chin, J.T. and Poulos, H.G., 1996. Tests on model jacked piles in calcareous sand, Geotechnical Testing Journal, 19(2), 164–180. doi: 10.1520/GTJ10339J
    [3] Cui, C.Y., Meng, K., Wu, Y.J., Chapman, D. and Liang, Z.M., 2018. Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation, Geomechanics and Engineering, 16(6), 609–618.
    [4] Ding, X.M., Kong, G.Q., Liu, H.L. and Lu, Y.R., 2012. Field test study of pile−soil load transfer characteristics of X-shaped cast-in-place pile, Rock and Soil Mechanics, 33(2), 489–493. (in Chinese)
    [5] Ding, X.M., Luan, L.B., Zheng, C.J., Mei, G.X. and Zhou, H., 2020. An analytical solution for wave propagation in a pipe pile with multiple defects, Acta Mechanica Solida Sinica, 33(2), 251–267. doi: 10.1007/s10338-019-00123-5
    [6] Kong, G.Q., Ding, X.M., Chen, Y.M. and Yang, G., 2012. Vertical uplift capacity characteristics and influence factor analysis of cast-in-situ X-section reinforced concrete pile group, Journal of Architecture and Civil Engineering, 29(3), 49–54. (in Chinese)
    [7] Li, Z.Y. and Gao, Y.F., 2019. Effects of inner soil on the vertical dynamic response of a pipe pile embedded in inhomogeneous soil, Journal of Sound and Vibration, 439, 129–143. doi: 10.1016/j.jsv.2018.09.050
    [8] Liu, H.L., 2007. Cast-in-situ X Shaped Pile Mould Sinking Device, Chinese Patent CN200720036892.6. (in Chinese)
    [9] Liu, H.L., Liu, Z.P. and Wang, X.Q., 2009. Study on the geometric characteristics of the cast-in-place X-type vibro-pile section, China Railway Science, 30(1), 17–23.
    [10] Liu, F., Yi, J., Cheng, P. and Yao, K., 2020. Numerical simulation of set-up around shaft of XCC pile in clay, Geomechanics and Engineering, 21(5), 489–501.
    [11] Luan, L.B., Zheng, C.J., Kouretzis, G. and Ding, X.M., 2020. Dynamic analysis of pile groups subjected to horizontal loads considering coupled pile-to-pile interaction, Computers and Geotechnics, 117, 103276. doi: 10.1016/j.compgeo.2019.103276
    [12] Lv, Y., Liu, J. and Zuo, D., 2018. Moisture effects on the undrained dynamic behavior of calcareous sand at high strain rates, Geotechnical Testing Journal, 42(3), 725–746.
    [13] Lv, Y.R., Ding, X.M. and Liu, H.L., 2011. In situ tests on cast-in-place concrete X-section pile for bearing capacity of single-pile composite foundation, Geohunan International Conference 2011, Hunan, China. pp. 39–47.
    [14] Lv, Y.R., Liu, H.L., Ng, C.W.W., Gunawan, A. and Ding, X.M., 2014. A modified analytical solution of soil stress distribution for XCC pile foundations, Acta Geotechnica, 9(3), 529–546. doi: 10.1007/s11440-013-0280-1
    [15] Lv, Y.R., Ng, C.W.W., Lam, S.Y., Liu, H.L. and Ding, X.M., 2016. Comparative study of Y-shaped and circular floating piles in consolidating clay, Canadian Geotechnical Journal, 53(9), 1483–1494. doi: 10.1139/cgj-2015-0634
    [16] Murff, J.D., 1987. Pile capacity in calcareous sands: State if the art, Journal of Geotechnical Engineering, 113(5), 490–507. doi: 10.1061/(ASCE)0733-9410(1987)113:5(490)
    [17] Qu, L.M., Ding, X.M., Zheng, C.J. and Liu, H.L., 2017. An analytical solution for wave propagation in a square pile due to transient point load, Computer and Geotechnics, 83, 77–82.
    [18] Qu, L.M., Ding, X.M., Wu, C.R., Long, Y.H. and Yang, J.C., 2020. Effects of topography on dynamic responses of single piles under vertical cyclic loading, Journal of Mountain Science, 17 (1), 230−243.
    [19] Seo, H., Basu, D., Prezzi, M. and Salgado, R., 2009. Load-settlement response of rectangular and circular piles in multilayered soil, Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 420–430. doi: 10.1061/(ASCE)1090-0241(2009)135:3(420)
    [20] Shahnazari, H. and Rezvani, R., 2013. Effective parameters for the particle breakage of calcareous sands: An experimental study, Engineering Geology, 159, 98–105. doi: 10.1016/j.enggeo.2013.03.005
    [21] Wang, X.Z., Jiao, Y.Y., Wang, R., Hu, M.J., Meng, Q.S. and Tan, F.Y., 2011. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea,Engineering Geology, 120(1–4), 40–47.
    [22] Wang, Z.Q., Liu, H.L., Zhang, M.X., Yuan, J. and Yong, J., 2010. Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles, Chinese Journal of Geotechnical Engineering, 32(6), 903–907. (in Chinese)
    [23] Wu, W.B., Liu, H., Yang, X.Y., Jiang, G.S., El Naggar, M.H., Mei, G.X. and Liang, R.Z., 2020. New method to calculate apparent phase velocity of open-ended pipe pile, Canadian Geotechnical Journal, 57(1), 127–138. doi: 10.1139/cgj-2018-0816
    [24] Yong, J., Lu, X.M. and Liu, H.L., 2010. Model test study of anti-pulling property of X-shaped concrete pile, Rock and Soil Mechanics, 31(11), 3430–3434. (in Chinese)
    [25] Zhang, M., Wang, X.H., Yang, G.C. and Xie, L.Z., 2013. Study of dynamic model testing of single pile and behaviors of pile-soil interface under cyclic load, Rock and Soil Mechanics, 34(4), 1037–1044. (in Chinese)
    [26] Zhang, M.X., Ding, X.M. and Chen, Y.M., 2011. Test on vertical behavior of cast-in-situ X-shaped concrete pile and its ultimate bearing capacity prediction, Journal of China Coal Society, 36(2), 267–271. (in Chinese)
    [27] Zhang, M.X., Feng, X.C. and Xu, P., 2014. Analysis on research progress of cast-in-situ X-section concrete pile, Subgrade Engineering, (4), 12–16. (in Chinese)
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  112
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-01
  • 修回日期:  2020-04-06
  • 录用日期:  2020-05-17
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回