留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic Positioning System Design for A Marine Vessel with Unknown Dynamics Subject to External Disturbances Including Wave Effect

Alireza HOSSEINNAJAD Mehdi LOUEIPOUR

Alireza HOSSEINNAJAD, Mehdi LOUEIPOUR. Dynamic Positioning System Design for A Marine Vessel with Unknown Dynamics Subject to External Disturbances Including Wave Effect[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 651-663. doi: 10.1007/s13344-020-0058-9
Citation: Alireza HOSSEINNAJAD, Mehdi LOUEIPOUR. Dynamic Positioning System Design for A Marine Vessel with Unknown Dynamics Subject to External Disturbances Including Wave Effect[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 651-663. doi: 10.1007/s13344-020-0058-9

Dynamic Positioning System Design for A Marine Vessel with Unknown Dynamics Subject to External Disturbances Including Wave Effect

doi: 10.1007/s13344-020-0058-9
More Information
  • Figure  1.  Block diagram of the proposed control system.

    Figure  2.  Inertial and body-fixed coordinate systems.

    Figure  3.  Conventional observer in DP control systems.

    Figure  4.  Structure of cascaded filter and observer.

    Figure  5.  Total motion, LF motion and WF motion of marine vessel.

    Figure  6.  Block diagram of the modified notch filter.

    Figure  7.  Surge LF motion estimation.

    Figure  8.  Surge LF motion estimation error.

    Figure  9.  Surge velocity estimation error.

    Figure  10.  Surge LF motion estimation error; 50% of uncertainty in inertia matrix.

    Figure  11.  Surge velocity estimation error; 50% of uncertainty in inertia matrix.

    Figure  12.  Surge LF motion (left) and the corresponding control signal (right).

    Figure  15.  Surge LF motion (left) and the corresponding control signal (right); 50% of uncertainty in system matrices.

    Figure  13.  Sway LF motion (left) and the corresponding control signal (right).

    Figure  14.  Heading LF motion (left) and the corresponding control signal (right).

    Figure  18.  Irregular wave-induced motion for surge direction.

    Figure  17.  Heading LF motion (left) and the corresponding control signal (right); 50% of uncertainty in system matrices.

    Figure  16.  Sway LF motion (left) and the corresponding control signal (right); 50% of uncertainty in system matrices.

    Figure  19.  Surge LF motion (left) and the corresponding control signal (right) under irregular wave-induced motion.

    Figure  21.  Heading LF motion (left) and the corresponding control signal (right) under irregular wave-induced motion.

    Figure  20.  Sway LF motion (left) and the corresponding control signal (right) under irregular wave-induced motion.

  • [1] Aarset, M.F., Strand, J.P. and Fossen, T.I., 1998. Nonlinear vectorial observer backstepping with integral action and wave filtering for ships, IFAC Proceedings Volumes, 31(30), 77–82. doi: 10.1016/S1474-6670(17)38420-3
    [2] Balchen, J.G., Jenssen, N.A. and Sælid, S., 1976. Dynamic positioning using Kalman filtering and optimal control theory, IFAC/IFIP Symposium on Automation in Offshore Oil Field Operation, Bergen, Norway.
    [3] Brodtkorb, A.H., Værnø, S.A., Teel, A.R., Sørensen, A.J. and Skjetne, R., 2016. Hybrid observer for improved transient performance of a marine vessel in dynamic positioning, IFAC-PapersOnLine, 49(18), 345–350. doi: 10.1016/j.ifacol.2016.10.189
    [4] Castañeda, H., Salas-Peña, O.S. and de León-Morales, J., 2017. Extended observer based on adaptive second order sliding mode control for a fixed wing UAV, ISA Transactions, 66, 226–232. doi: 10.1016/j.isatra.2016.09.013
    [5] Cui, R.X., Chen, L.P., Yang, C.G. and Chen, M., 2017. Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities, IEEE Transactions on Industrial Electronics, 64(8), 6785–6795. doi: 10.1109/TIE.2017.2694410
    [6] Donnarumma, S., Figari, M., Martelli, M., Vignolo, S. and Viviani, M., 2018. Design and validation of dynamic positioning for marine systems: A case study, IEEE Journal of Oceanic Engineering, 43(3), 677–688. doi: 10.1109/JOE.2017.2732298
    [7] Du, J.L., Hu, X., Krstić, M. and Sun, Y.Q., 2018. Dynamic positioning of ships with unknown parameters and disturbances, Control Engineering Practice, 76, 22–30. doi: 10.1016/j.conengprac.2018.03.015
    [8] Fossen, T.I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, New Jersey.
    [9] Fossen, T.I. and Perez, T., 2009. Kalman filtering for positioning and heading control of ships and offshore rigs, IEEE Control Systems Magazine, 29(6), 32–46. doi: 10.1109/MCS.2009.934408
    [10] Fossen, T.I. and Strand, J.P., 1999. Passive nonlinear observer design for ships using Lyapunov methods: Full-scale experiments with a supply vessel, Automatica, 35(1), 3–16. doi: 10.1016/S0005-1098(98)00121-6
    [11] Fung, P. and Grimble, M., 1983. Dynamic ship positioning using a self-tuning Kalman filter, IEEE Transactions on Automatic Control, 28(3), 339–350. doi: 10.1109/TAC.1983.1103226
    [12] Gao, Z.Q., 2003. Scaling and bandwidth-parameterization based controller tuning, Proceedings of the 2003 American Control Conference, Denver, CO, USA.
    [13] Hosseinnajad, A. and Loueipour, M., 2019. Design of dynamic positioning control system for an ROV with unknown dynamics using modified time delay estimation, International Journal of Maritime Technology, 11, 53–59. doi: 10.29252/ijmt.11.53
    [14] Karimi-Ghartemani, M., Khajehoddin, S.A., Jain, P.K., Bakhshai, A. and Mojiri, M., 2012. Addressing DC component in PLL and notch filter algorithms, IEEE Transactions on Power Electronics, 27(1), 78–86. doi: 10.1109/TPEL.2011.2158238
    [15] Kjerstad, Ø.K. and Skjetne, R., 2016. Disturbance rejection by acceleration feedforward for marine surface vessels, IEEE Access, 4, 2656–2669. doi: 10.1109/ACCESS.2016.2553719
    [16] Liu, X.L. and Xiong, L.P., 2014. Mechanical arm active disturbance rejection control based on artificial bee colony algorithm, Applied Mechanics and Materials, 513-517, 1511–1514. doi: 10.4028/www.scientific.net/AMM.513-517.1511
    [17] Loria, A., Fossen, T.I. and Panteley, E., 2000. A separation principle for dynamic positioning of ships: Theoretical and experimental results, IEEE Transactions on Control Systems Technology, 8(2), 332–343. doi: 10.1109/87.826804
    [18] Loueipour, M., Keshmiri, M., Danesh, M. and Mojiri, M., 2015. Wave filtering and state estimation in dynamic positioning of marine vessels using position measurement, IEEE Transactions on Instrumentation and Measurement, 64(12), 3253–3261. doi: 10.1109/TIM.2015.2459551
    [19] Madoński, R. and Herman, P., 2015. Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56, 18–27. doi: 10.1016/j.isatra.2014.11.008
    [20] Moreno-Valenzuela, J. and Acho-Zuppa, L., 2004. Dynamic positioning control of ships via relay observer design, Asian Journal of Control, 6(3), 398–406.
    [21] Mousazadeh, H. and Kiapey, A., 2019. Experimental evaluation of a new developed algorithm for an autonomous surface vehicle and comparison with simulink results, China Ocean Engineering, 33(3), 268–278. doi: 10.1007/s13344-019-0026-4
    [22] Peng, Z.H. and Wang, J., 2018. Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(4), 535–544.
    [23] Peng, Z.H., Wang, D., Li, T.S. and Han, M., 2019. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance, IEEE Transactions on Cybernetics, 50(6), 2527–2535.
    [24] Qian, J.Z., Xiong, A. and Ma, W.L., 2016. Extended state observer-based sliding mode control with new reaching law for PMSM speed control, Mathematical Problems in Engineering, Article ID 6058981.
    [25] Saelid, S., Jenssen, N. and Balchen, J., 1983. Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control, IEEE Transactions on Automatic Control, 28(3), 331–339. doi: 10.1109/TAC.1983.1103225
    [26] Sariyildiz, E. and Ohnishi, K., 2014. A guide to design disturbance observer, Journal of Dynamic Systems,Measurement,and Control, 136(2), 021011. doi: 10.1115/1.4025801
    [27] Smallwood, D.A. and Whitcomb, L.L., 2004. Model-based dynamic positioning of underwater robotic vehicles: Theory and experiment, IEEE Journal of Oceanic Engineering, 29(1), 169–186. doi: 10.1109/JOE.2003.823312
    [28] Sørensen, A.J., 2011. A survey of dynamic positioning control systems, Annual Reviews in Control, 35(1), 123–136. doi: 10.1016/j.arcontrol.2011.03.008
    [29] Sørensen, A.J., 2012. Marine Control Systems Propulsion and Motion Control of Ships and Ocean Structures, Lecture Notes, NTNU.
    [30] Tannuri, E.A. and Morishita, H.M., 2006. Experimental and numerical evaluation of a typical dynamic positioning system, Applied Ocean Research, 28(2), 133–146. doi: 10.1016/j.apor.2006.05.005
    [31] Værnø, S.A., Brodtkorb, A.H. and Skjetne, R., 2019. Compensation of bias loads in dynamic positioning of marine surface vessels, Ocean Engineering, 178, 484–492. doi: 10.1016/j.oceaneng.2019.03.010
    [32] Værnø, S.A., Brodtkorb, A.H., Skjetne, R. and Calabrò, V., 2017. Time-varying model-based observer for marine surface vessels in dynamic positioning, IEEE Access, 5, 14787–14796. doi: 10.1109/ACCESS.2017.2731998
    [33] Vidyasagar, M., 1980. Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability, IEEE Transactions on Automatic Control, 25(4), 773–779. doi: 10.1109/TAC.1980.1102422
    [34] Wang, F., Lv, M. and Xu, F., 2016. Design and implementation of a triple-redundant dynamic positioning control system for deepwater drilling rigs, Applied Ocean Research, 57, 140–151. doi: 10.1016/j.apor.2016.03.007
    [35] Wang, F., Wan, L., Jiang, D.P. and Xu, Y.R., 2011. Design and reliability analysis of DP-3 dynamic positioning control architecture, China Ocean Engineering, 25(4), 709–720. doi: 10.1007/s13344-011-0057-y
    [36] Wang, Y.L., Shi, R.J. and Wang, H.B., 2014. ESO-based fuzzy sliding-mode control for a 3-DOF serial-parallel hybrid humanoid arm, Journal of Control Science and Engineering, 2014, Article ID 304590.
    [37] Xia, G.Q., Shao, X.C. and Zhao, A., 2015. Robust nonlinear observer and observer-backstepping control design for surface ships, Asian Journal of Control, 17(4), 1377–1393. doi: 10.1002/asjc.1021
    [38] Yao, J.Y., Jiao, Z.X. and Ma, D.W., 2014. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping, IEEE Transactions on Industrial Electronics, 61(11), 6285–6293. doi: 10.1109/TIE.2014.2304912
    [39] Zhang, Y., Jiao, L. and Liu, J., 2011. Optimization design of ADRC for oxygen content in flue gas based on chaos particle swarm optimization algorithm, Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China.
    [40] Zhang, Y.J., Fan, C.D., Zhao, F.F., Ai, Z.Y. and Gong, Z.H., 2014. Parameter tuning of ADRC and its application based on CCCSA, Nonlinear Dynamics, 76(2), 1185–1194. doi: 10.1007/s11071-013-1201-4
  • 加载中
图(21)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  75
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-03-07
  • 录用日期:  2020-04-25
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回