留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of Baffled Rectangular and Prismatic Storage Tank Against the Sloshing Phenomenon

Hassan SAGHI NING De-zhi CONG Pei-wen ZHAO Ming

Hassan SAGHI, NING De-zhi, CONG Pei-wen, ZHAO Ming. Optimization of Baffled Rectangular and Prismatic Storage Tank Against the Sloshing Phenomenon[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 664-676. doi: 10.1007/s13344-020-0059-8
Citation: Hassan SAGHI, NING De-zhi, CONG Pei-wen, ZHAO Ming. Optimization of Baffled Rectangular and Prismatic Storage Tank Against the Sloshing Phenomenon[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 664-676. doi: 10.1007/s13344-020-0059-8

Optimization of Baffled Rectangular and Prismatic Storage Tank Against the Sloshing Phenomenon

doi: 10.1007/s13344-020-0059-8
More Information
  • Figure  1.  Experimental setup (Hakim Sabzevari University).

    Figure  2.  Horizontal force on the tank to evaluate the mesh size independency.

    Figure  3.  Snapshot of the free surface in the rectangular tank.

    Figure  4.  Comparison of the free surface oscillation in a rectangular tank for experimental and numerical results.

    Figure  5.  Snapshot of the free surface oscillation in the baffled rectangular tank.

    Figure  6.  Comparison of the free surface oscillation in a baffled rectangular tank for experimental and numerical results.

    Figure  7.  Comparison on the pressure data between the results of the current paper and those of Xue et al. (2019).

    Figure  8.  Coordinate system and geometry of the baffled rectangular storage tank for hb=0.06 m.

    Figure  9.  Comparison of the baffled rectangular tanks with different heights (hb) against the sloshing phenomenon based on (a) pressure at the point of x=0.075 m, y=0.45 m, and z=0.01 m; (b) horizontal force exerted on the tank.

    Figure  10.  Maximum pressure (Pmax) and the decrement percentage of the maximum pressure (DP) for different baffle heights.

    Figure  11.  Maximum horizontal force (Fmax) and the decrement percentage of the maximum horizontal force (DF) for different baffle heights.

    Figure  12.  Velocity vectors at different time for different baffle heights.

    Figure  13.  Effect of sway motion amplitude for the rectangular storage tanks with baffle (hb=0.06 m) and without baffle on the horizontal force exerted on the tank.

    Figure  14.  Decrement percentage of maximum horizontal force (DF) for different sway motion amplitudes (a).

    Figure  15.  Comparison of different criteria to define the optimum rectangular storage tank (a) tank area (AT) and maximum horizontal force exerted on the tank area (Fxmax); (b) cumulative entropy generation $ {S}_{\mathrm{g}\mathrm{e}\mathrm{n},\mathrm{c}\mathrm{u}\mathrm{m}} $ .

    Figure  16.  EG of optimum rectangular storage tank with and without baffle.

    Figure  17.  Snapshots of the entropy generation distribution in different time for the optimum rectangular storage tanks.

    Figure  19.  Horizontal forces exerted on the tank for different baffle arrangements.

    Figure  18.  Schematic sketch of the ‘3-9-12-9-3’ type baffles (unit: cm).

    Figure  20.  (a) Schematic view of the chambered storage tank, (b) Dimensions of the tank.

    Figure  21.  Comparison of cumulative entropy generation (Sgen,cum) and maximum horizontal force exerted on the tank perimeter (Fxmax) of the chambered tanks with different a.

    Table  1.   Dimensions of the chambered tank.

    a (m) L* (m) L (m) W (m) hw AT (m2)
    0 0.25 0.25 0.27 0.06 0.4470
    0.03 0.253 0.1931 0.2732 0.063 0.4312
    0.06 0.2623 0.1422 0.2832 0.071 0.4217
    0.09 0.2785 0.0984 0.3007 0.083 0.4191
    0.12 0.3026 0.0625 0.3267 0.095 0.4258
    下载: 导出CSV
  • [1] Akyıldız, H., Ünal, N.E. and Aksoy, H., 2013. An experimental investigation of the effects of the ring baffles on liquid sloshing in a rigid cylindrical tank, Ocean Engineering, 59, 190–197. doi: 10.1016/j.oceaneng.2012.12.018
    [2] Bejan, A.A., 1979. A study of entropy generation in fundamental convective heat transfer, Journal of Heat Transfer, 101(4), 718–725. doi: 10.1115/1.3451063
    [3] Bejan, A.A., 1987. The thermodynamic design of heat and mass transfer processes and devices, International Journal of Heat and Fluid Flow, 8(4), 258–276. doi: 10.1016/0142-727X(87)90062-2
    [4] Biswal, K.C., Bhattacharyya, S.K. and Sinha, P.K., 2003. Free-vibration analysis of liquid-filled tank with baffles, Journal of Sound and Vibration, 259(1), 177–192. doi: 10.1006/jsvi.2002.5087
    [5] Chen, B.F. and Nokes, R., 2005. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank, Journal of Computational Physics, 209(1), 47–81. doi: 10.1016/j.jcp.2005.03.006
    [6] Cho, I.H., Choi, J.S. and Kim, M.H., 2017. Sloshing reduction in a swaying rectangular tank by a horizontal porous baffle, Ocean Engineering, 138, 23–34. doi: 10.1016/j.oceaneng.2017.04.005
    [7] Chu, C.R., Wu, Y.R., Wu, T.R. and Wang, C.Y., 2018. Slosh-induced hydrodynamic force in a water tank with multiple baffles, Ocean Engineering, 167, 282–292. doi: 10.1016/j.oceaneng.2018.08.049
    [8] Gavrilyuk, I.P., Lukovsky, I.A. and Timokha, A.N., 2005. Linear and nonlinear sloshing in a circular conical tank, Fluid Dynamics Research, 37(6), 399–429. doi: 10.1016/j.fluiddyn.2005.08.004
    [9] Goudarzi, M.A. and Farshadmanesh, P., 2015. Numerical evaluation of hydrodynamic damping due to the upper mounted baffles in real scale tanks, Soil Dynamics and Earthquake Engineering, 77, 290–298. doi: 10.1016/j.soildyn.2015.06.003
    [10] Hasheminejad, S.M. and Aghabeigi, M., 2012. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles, Applied Mathematical Modelling, 36(1), 57–71. doi: 10.1016/j.apm.2011.02.026
    [11] Huang, S., Duan, W.Y. and Zhu, X., 2010. Time-domain simulation of tank sloshing pressure and experimental validation, Journal of Hydrodynamics,Ser. B, 22(S5), 556–563.
    [12] Hwang, S.C., Park, J.C., Gotoh, H., Khayyer, A. and Kang, K.J., 2016. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method, Ocean Engineering, 118, 227–241. doi: 10.1016/j.oceaneng.2016.04.006
    [13] Jung, J.H., Yoon, H.S., Lee, S.Y. and Shin, S.C., 2012. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank, Ocean Engineering, 44, 79–89. doi: 10.1016/j.oceaneng.2012.01.034
    [14] Jung, J.H., Yoon, H.S. and Lee, C.Y., 2015. Effect of natural frequency modes on sloshing phenomenon in a rectangular tank, International Journal of Naval Architecture and Ocean Engineering, 7(3), 580–594. doi: 10.1515/ijnaoe-2015-0041
    [15] Ketabdari, M.J. and Saghi, H., 2012. Numerical analysis of trapezoidal storage tank due to liquid sloshing phenomenon, Iranian Journal of Marine Science and Technology, 18(61), 33–39.
    [16] Ketabdari, M.J. and Saghi, H., 2013a. Parametric study for optimization of storage tanks considering sloshing phenomenon using coupled BEM–FEM, Applied Mathematics and Computation, 224, 123–139. doi: 10.1016/j.amc.2013.08.036
    [17] Ketabdari, M.J. and Saghi, H., 2013b. Numerical study on behavior of the trapezoidal storage tank due to liquid sloshing impact, International Journal of Computational Methods, 10(6), 2013b. Numerical study on behavior of the trapezoidal storage tank due to liquid sloshing impact, International Journal of Computational Methods, 10(6), 1350046. doi: 10.1142/S0219876213500461
    [18] Ketabdari, M.J. and Saghi, H., 2013c. A new arrangement with nonlinear sidewalls for tanker ship storage panels, Journal of Ocean University of China, 12(1), 23–31. doi: 10.1007/s11802-013-1925-2
    [19] Ketabdari, M.J., Saghi, H., Rezaei, H. and Rezanejad, K., 2015. Optimization of linear and nonlinear sidewall storage units using coupled boundary element-finite element methods, KSCE Journal of Civil Engineering, 19(4), 805–813. doi: 10.1007/s12205-011-0396-5
    [20] Kim, S.P., Chun, C.M., Shin, W.J., Cho, D.S. and Park, J.C., 2018. Experimental study on sloshing reduction effects of baffles linked to a spring system, Ocean Engineering, 170, 136–147. doi: 10.1016/j.oceaneng.2018.10.001
    [21] Koh, C.G., Luo, M., Gao, M. and Bai, W., 2013. Modelling of liquid sloshing with constrained floating baffle, Computers & Structures, 122, 270–279.
    [22] Kolaei, A., Rakheja, S. and Richard, M.J., 2015. A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container, Computers & Fluids, 107, 43–58.
    [23] Kuzniatsova, M. and Shimanovsky, A., 2016. Definition of rational form of lateral perforated baffle for road tanks, Procedia Engineering, 134, 72–79. doi: 10.1016/j.proeng.2016.01.041
    [24] Ning, D.Z., Song, W.H., Liu, Y.L. and Teng, B., 2012. A boundary element investigation of liquid sloshing in coupled horizontal and vertical excitation, Journal of Applied Mathematics, 2012, 340640.
    [25] OpenFoam, 2019. The openFoam Foundation, http://openfoam.org [2019-07-10].
    [26] Panigrahy, P.K., Saha, U.K. and Maity, D., 2009. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks, Ocean Engineering, 36(3–4), 213–222.
    [27] Papaspyrou, S., Karamanos, S.A. and Valougeorgis, D., 2004. Response of half-full horizontal cylinders under transverse excitation, Journal of Fluids and Structures, 19(7), 985–1003. doi: 10.1016/j.jfluidstructs.2004.04.014
    [28] Rudman, M., 1997. Volume-tracking methods for interfacial flow calculations, International Journal for Numerical Methods in Fluids, 24(7), 671–691. doi: 10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
    [29] Saghi, H., 2016. The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon, International Journal of Naval Architecture and Ocean Engineering, 8(2), 153–168. doi: 10.1016/j.ijnaoe.2015.12.001
    [30] Saghi, H., 2018. Entropy generation minimization for the sloshing phenomenon in half-full elliptical storage tanks, Physica A:Statistical Mechanics and its Applications, 491, 972–983. doi: 10.1016/j.physa.2017.09.086
    [31] Saghi, H. and Ketabdari, M.J., 2012. Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM, Journal of Marine Science and Application, 11(4), 417–426. doi: 10.1007/s11804-012-1151-0
    [32] Saghi, H., Ketabdari, M.J., and Booshi, S., 2012. Generation of linear and nonlinear waves in numerical wave tank using clustering technique-volume of fluid method, Applied Mathematics and Mechanics, 33, 1179–1190. doi: 10.1007/s10483-012-1614-9
    [33] Saghi, H. and Lakzian, E., 2017. Optimization of the rectangular storage tanks for the sloshing phenomena based on the entropy generation minimization, Energy, 128, 564–574. doi: 10.1016/j.energy.2017.04.075
    [34] Saghi, H. and Lakzian, E., 2019. Effects of using obstacles on the dam-break flow based on entropy generation analysis, The European Physical Journal Plus, 134(5), 237. doi: 10.1140/epjp/i2019-12592-3
    [35] Sanapala, V.S., Rajkumar, M., Velusamy, K. and Patnaik, B.S.V., 2018. Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container, Journal of Fluids and Structures, 76, 229–250. doi: 10.1016/j.jfluidstructs.2017.10.001
    [36] Shekari, M.R., 2020. On the numerical assessment of the resonant sloshing responses in 3D multi baffled partially liquid-filled steel cylindrical tanks shaken by long-period ground motions, Soil Dynamics and Earthquake Engineering, 129, 105712. doi: 10.1016/j.soildyn.2019.105712
    [37] Wang, J.D., Wang, C.L. and Liu, J.X., 2019. Sloshing reduction in a pitching circular cylindrical container by multiple rigid annular baffes, Ocean Engineering, 171, 241–249. doi: 10.1016/j.oceaneng.2018.11.013
    [38] Wang, W.Y., Guo, Z.J., Peng, Y. and Zhang, Q., 2016. A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks, Ocean Engineering, 111, 543–568. doi: 10.1016/j.oceaneng.2015.11.020
    [39] Xue, A.N., Chen, Y.C., Zheng, J.H., Qian, L. and Yuan, X.L., 2019. Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes, Ocean Engineering, 192, 106582. doi: 10.1016/j.oceaneng.2019.106582
    [40] Yu, Y.M., Ma, N., Fan, S.M. and Gu, X.C., 2019. Experimental studies of suppressing effectiveness on sloshing with two perforated floating plates, International Journal of Naval Architecture and Ocean Engineering, 11(1), 285–293. doi: 10.1016/j.ijnaoe.2018.06.003
    [41] Yue, B.Z., 2008. Nonlinear coupled dynamics of liquid-filled spherical container in microgravity, Applied Mathematics and Mechanics, 29(8), 1085–1092. doi: 10.1007/s10483-008-0812-y
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  113
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-26
  • 修回日期:  2020-06-03
  • 录用日期:  2020-07-12
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回