留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Model Updating of A Pier-Type Structure Using Experimental Modal Analysis

Alireza MOJTAHEDI Shahriar BAYBORDI Amin FATHI Aliakbar YAGHUBZADEH

Alireza MOJTAHEDI, Shahriar BAYBORDI, Amin FATHI, Aliakbar YAGHUBZADEH. A Hybrid Particle Swarm Optimization and Genetic Algorithm for Model Updating of A Pier-Type Structure Using Experimental Modal Analysis[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 697-707. doi: 10.1007/s13344-020-0060-2
Citation: Alireza MOJTAHEDI, Shahriar BAYBORDI, Amin FATHI, Aliakbar YAGHUBZADEH. A Hybrid Particle Swarm Optimization and Genetic Algorithm for Model Updating of A Pier-Type Structure Using Experimental Modal Analysis[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 697-707. doi: 10.1007/s13344-020-0060-2

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Model Updating of A Pier-Type Structure Using Experimental Modal Analysis

doi: 10.1007/s13344-020-0060-2
More Information
  • Figure  1.  Experimental modal test: a) data acquisition system of the modal testing; b) fixing the accelerometers in considered joints.

    Figure  2.  (a) A sample of time series of recorded acceleration and (b) related coherence functions measured for the point in the vicinity of the shaker connection.

    Figure  3.  The geometry and joint number of model made for numerical analysis.

    Figure  4.  First and third mode shapes of the modal test gained by ME’scopeVES software (for the sake of clarity, only the outer columns have been considered).

    Figure  5.  The first four numerical mode shapes of the studied model.

    Figure  6.  Local directions of a space frame member (Weaver and Johnston, 1994).

    Figure  7.  Deformed semi rigid connection (Filho et al., 2004).

    Figure  8.  Variation of the first three natural frequencies for semi-rigidity in connection 3.

    Figure  9.  Variation of the first three natural frequencies for semi-rigidity in connection 5

    Figure  10.  Variation of the first four natural frequencies for simulation of semi rigid connection in all connections.

    Figure  11.  Coefficient of variations of predicted rigidity of connection in optimization process.

    Figure  12.  Coefficient of variations of first twelve frequencies gained by optimization process.

    Figure  13.  Objective function chart convergences for the HPSOGA and PSO algorithms versus iterations (scenario 8 of MCS).

    Table  1.   Physical and geometrical specifications of the empirical model

    Piles specifications Deck specifications
    Parameter Value Parameter Value
    Length 400 mm Length 600 mm
    External diameter 400 mm External diameter 400 mm
    Thickness 10 mm Thickness 5 mm
    Mass density 7850 kg/m3 Mass density 7850 kg/m3
    Poisson ratio 0.3 Poisson ratio 0.3
    Young modulus 200 GPa Young modulus 200 GPa
    下载: 导出CSV

    Table  2.   Coordinate of accelerometers joint and the stimulation points

    Nodes SL1 SL4 SP1 SP2 F1
    Locations (cm) (0, 5, 0) (0, 20, 0) (5, 20, 0) (30, 20, 5) (15, 5, 5)
    下载: 导出CSV

    Table  3.   Natural frequencies of the experimental model

    Mode 1 2 3 4 5
    Experimental frequency (Hz) 173 179.3 223.42 570.8 575.31
    下载: 导出CSV

    Table  4.   Initial natural frequencies from numerical modal analysis

    Mode 1 2 3 4 5
    Numerical frequency (Hz) 174.22 175.11 218.36 574.6 583.9
    下载: 导出CSV

    Table  5.   Best parameters for HPSO and basic PSO for model updating

    Method Parameters
    Population/particle size Iteration C1 C2 w Pm Pc
    Basic PSO 50 140 2.1 1.9 0.7
    HPSOGA 40 140 2.1 1.9 0.7 0.05 0.1
    下载: 导出CSV

    Table  6.   Rigidity percentages and springs stiffness calculated by optimization process

    Method Connection number
    1 2 3 4 5 6 7 8 9
    PSO Ri (N·m/rad) 1.20×106 1.81×106 2.79×106 1.52×106 1.83×106 1.32×106 1.37×106 1.50×106 2.28×106
    Pi (%) 87.3 91.2 94.1 89.7 91.3 88.3 88.7 89.6 92.9
    PSO-GA Ri (N·m/rad) 1.27×106 1.77×106 1.27×106 1.59×106 2.06×106 1.54×106 1.34×106 1.57×106 2.36×106
    Pi (%) 87.9 91.01 87.8 90.01 92.2 89.8 88.5 90 93.1
    下载: 导出CSV

    Table  7.   First five experimental and updated numerical frequencies

    Frequency number f1 f2 f3 f4 f5
    Experimental frequencies(Hz) 173 179.3 223.42 570.8 575.31
    PSO Updated 173.2 180.93 220.68 569.86 571.45
    Difference (%) 0.11 0.9 −1.22 −0.16 −0.67
    HPSOGA Updated 173.15 180.23 219.87 571.2 572.60
    Difference (%) 0.09 0.51 −1.58 0.08 −0.47
    下载: 导出CSV
  • [1] Ali, A.F. and Tawhid, M.A., 2017. A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems, Ain Shams Engineering Journal, 8(2), 191–206. doi: 10.1016/j.asej.2016.07.008
    [2] American Institute of Steel Construction (AISC), 1989. Manual of Steel Construction–Allowable Stress Design, Specification for Structural Steel Buildings, Allowable Stress Design and Plastic Design.
    [3] American Institute of Steel Construction (AISC), 1993. S342L-Load and Resistance Factor Design Specification for Structural Steel Buildings (LRFD).
    [4] Batou, A., 2015. A global/local probabilistic approach for reduced-order modeling adapted to the low- and mid-frequency structural dynamics, Computer Methods in Applied Mechanics and Engineering, 294, 123–140. doi: 10.1016/j.cma.2015.06.007
    [5] Bayat, M. and Zahrai, S.M., 2017. Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity, Steel and Composite Structures, 25(1), 1–17.
    [6] Bradner, C., Schumacher, T., Cox, D. and Higgins, C., 2010. Experimental setup for a large-scale bridge superstructure model subjected to waves, Journal of Waterway,Port,Coastal,and Ocean Engineering, 137(1), 3–11. doi: 10.1061/(ASCE)WW.1943-5460.0000059
    [7] Chen, W.F. and Lui, E.M., 1987. Effects of joint flexibility on the behavior of steel frames, Computers & Structures, 26(5), 719–732.
    [8] Filho, M.S., Guimarães, M.J.R., Sahlit, C.L. and Brito, J.L.V., 2004. Wind pressures in framed structures with semi-rigid connections, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 180–189.
    [9] Feizi, M.G., Mojtahedi, A. and Nourani, V., 2015. Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames, Steel and Composite Structures, 19(2), 467–484. doi: 10.12989/scs.2015.19.2.467
    [10] Gupta, S. and Manohar, C.S., 2001. Reliability analysis of vibrating structures using stochastic finite element method and adaptive importance sampling, Proceedings of National Symposium on Advances in Structural Dynamics and Design, Madras.
    [11] Hadidi, A. and Rafiee, A., 2015. A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames, International Journal of Steel Structures, 15(1), 89–102. doi: 10.1007/s13296-015-3006-4
    [12] Iwan, W.D. and Huang, C.T., 1996. On the dynamic response of non-linear systems with parameter uncertainties, International Journal of Non-Linear Mechanics, 31(5), 631–645. doi: 10.1016/0020-7462(96)00027-3
    [13] Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95 - IEEE International Conference on Neural Network, Perth, WA, Australia.
    [14] Kim, S.Y., Shin, K.J., Lee, S.H. and Lee, H.D., 2016. Experimental investigation of beam-to-column connection with SHN490 steel under cyclic loading, International Journal of Steel Structures, 16(4), 1299–1307. doi: 10.1007/s13296-016-0092-x
    [15] Kohoutek, R., 1998. Nondestructive Evaluation of Connection Stiffness, in: Nondestructive Characterization of Materials, Green, R.E. (eds) , VIII. Springer, Boston, MA.
    [16] Koriga, S., Ihaddoudene, A.N.T. and Saïdani, M., 2019. Numerical model for the non-linear dynamic analysis of multi-storey structures with semi-rigid joints with specific reference to the Algerian code, Structures, 19, 184–192. doi: 10.1016/j.istruc.2019.01.008
    [17] McGuire, W., Gallagher, R.H. and Ziemian, R.D., 1999. Matrix Structural Analysis, John Wiley & Sons Inc., New York, USA.
    [18] Mojtahedi, A., Lotfollahi Yaghin, M.A., Hassanzadeh, Y., Abbasidoust, F., Ettefagh, M.M. and Aminfar, M.H., 2012. A robust damage detection method developed for offshore jacket platforms using modified artificial immune system algorithm, China Ocean Engineering, 26(3), 379–395. doi: 10.1007/s13344-012-0029-x
    [19] Mojtahedi, A., Hokmabady, H., Shakeryzad, A.S.Z. and Nassiraei, H., 2019. Establishment of a hybrid Fuzzy–Krill Herd approach for novelty detection applied to damage classification of offshore jacket-type structures, Journal of Marine Science and Technology, 24(3), 812–829. doi: 10.1007/s00773-018-0589-4
    [20] Moussemi, M., Nezamolmolki, D. and Aftabi Sani, A., 2016. Free vibration analysis of a steel T-Shape frame including semi-rigid Khorjini connection with continuous beam, International Journal of Steel Structures, 16(3), 657–669. doi: 10.1007/s13296-014-0209-z
    [21] Ozturk, A.U. and Catal, H.H., 2005. Dynamic analysis of semi-rigid frames, Mathematical and Computational Applications, 10(1), 1–8. doi: 10.3390/mca10010001
    [22] Poggi, C., 1988. A finite element model for the analysis of flexibly connected steel frames, International Journal for Numerical Methods in Engineering, 26(10), 2239–2254. doi: 10.1002/nme.1620261008
    [23] Qian, C., Shen, G.H., Guo, Y. and Xing, Y.L., 2017. Influence of semi-rigid connections on wind-induced responses of transmission towers, Journal of Zhejiang University(Engineering Science), 51(6), 1082–1089. (in Chinese)
    [24] Schüttrumpf, H., Kortenhaus, A., Fröhle, P. and Peters, K., 2008. Analysis of uncertainties in coastal structure design by expert judgement, Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Darmstadt.
    [25] Seiffert, B., Hayatdavoodi, M. and Ertekin, C., 2015. Experimental setup for a large-scale bridge superstructure model subjected to waves, Journal of Mechanics B/Fluids, 53, 191-205.
    [26] Soize, C., 2000. A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, 15(3), 277–294. doi: 10.1016/S0266-8920(99)00028-4
    [27] Soleimani, E. and Behnamfar, F., 2017. New moment-rotation equation for welded steel beam-to-column connections, International Journal of Steel Structures, 17(2), 389–411. doi: 10.1007/s13296-017-6003-y
    [28] Türker, T., Kartal, M.E., Bayraktar, A. and Muvafik, M., 2009. Assessment of semi-rigid connections in steel structures by modal testing, Journal of Constructional Steel Research, 65(7), 1538–1547. doi: 10.1016/j.jcsr.2009.03.002
    [29] Verdure, L., Schoefs, F., Casari, P. and Yanes, H., 2005. Uncertainty updating of on-pile wharf after monitoring, Proceedings of the 9th International Conference on Structural Safety and Reliability, Rotterdam.
    [30] Weaver, W. and Johnston, P.R., 1994. Structural Dynamics by Finite Elements, Prentice-Hall Inc., New Jersey, USA.
    [31] Yaghin, M.A.L., Mojtahedi, A. and Aminfar, M.H., 2012. Physical model studies and system identification of hydrodynamics around a vertical square-section cylinder in irregular sea waves, Ocean Engineering, 55, 10–22. doi: 10.1016/j.oceaneng.2012.07.004
    [32] Yu, C.H. and Shanmugam, N.E., 1986. Stability of frames with semirigid joints, Computers & Structures, 23(5), 639–648.
    [33] Zhang, J.F., Jiang, J.Q., Xu, S.L. and Wang, Z.Y., 2018. An investigation of the effect of semi-rigid connections on sudden column removal in steel frames, Structures, 13, 166–177. doi: 10.1016/j.istruc.2017.12.001
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  145
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-06-16
  • 录用日期:  2020-07-20
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回