留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical Study on the Unsteady Characteristics of the Propeller Cavitation in Uniform and Nonuniform Wake Flows

GONG Zhao-xin CHEN Ying LI Jie CHEN Xin LU Chuan-jing

GONG Zhao-xin, CHEN Ying, LI Jie, CHEN Xin, LU Chuan-jing. Numerical Study on the Unsteady Characteristics of the Propeller Cavitation in Uniform and Nonuniform Wake Flows[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 688-696. doi: 10.1007/s13344-020-0062-0
Citation: GONG Zhao-xin, CHEN Ying, LI Jie, CHEN Xin, LU Chuan-jing. Numerical Study on the Unsteady Characteristics of the Propeller Cavitation in Uniform and Nonuniform Wake Flows[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 688-696. doi: 10.1007/s13344-020-0062-0

Numerical Study on the Unsteady Characteristics of the Propeller Cavitation in Uniform and Nonuniform Wake Flows

doi: 10.1007/s13344-020-0062-0
More Information
  • Figure  1.  INSEAN E779A model propeller shape.

    Figure  2.  Scheme of the computational domain.

    Figure  3.  Computational meshes.

    Figure  4.  y+ distribution on both sides of the propeller in uniform wake flow.

    Figure  5.  Cavitation shapes on the propeller blade in the uniform wake flow.

    Figure  6.  Flow condition and the axial velocity distribution in non-homogeneous flow cited from (a) Salvatore et al.’s (2009) experiment and (b) Felli and Di Felice’s (2005) experiment.

    Figure  7.  Sketch for the three slices of the cross section.

    Figure  8.  Axial velocity distribution at three cross sections in different wake flow (unit: m/s).

    Figure  9.  Cavity evolution in the uniform wake flow, and the interval angle between two adjacent pictures being 32.4°.

    Figure  11.  Cavity evolution in the non-uniform wake flow of WF2, the interval angle between two adjacent pictures being 32.4°.

    Figure  10.  Cavity evolution in the non-uniform wake flow of WF1, the interval angle between two adjacent pictures being 32.4°.

    Figure  12.  Contour of pressure at the cross section of x=0, the color bar with the unit of kPa, and the interval angle between two adjacent pictures being 32.4° for each case.

    Figure  13.  Volume variation of the cavity with respect to time.

    Figure  14.  Iso-surface for constant value of Q-criterion (Q=10000 s−2) in three wake flows.

    Figure  15.  Contour of velocity distribution with the streamlines (black solid lines) at the cross section of x=0, and blue dash lines being used to confine the outer region for analytical convenience.

  • [1] Arndt, R.E.A., 1981. Cavitation in fluid machinery and hydraulic structures, Annual Review of Fluid Mechanics, 13(1), 273–328. doi: 10.1146/annurev.fl.13.010181.001421
    [2] Arndt, R.E.A, Arakeri, V.H. and Higuchi, H., 1991. Some observations of tip-vortex cavitation, Journal of Fluid Mechanics, 229, 269–289. doi: 10.1017/S0022112091003026
    [3] Arndt, R.E.A., Pennings, P., Bosschers, J. and Van Terwisga, T., 2015. The singing vortex, Interface Focus, 5(5), 20150025. doi: 10.1098/rsfs.2015.0025
    [4] Bertetta, D., Brizzolara, S., Gaggero, S., Viviani, M. and Savio, L., 2012. CPP propeller cavitation and noise optimization at different pitches with panel code and validation by cavitation tunnel measurements, Ocean Engineering, 53, 177–195. doi: 10.1016/j.oceaneng.2012.06.026
    [5] Chen, Y., Chen, X., Gong, Z.X., Li, J. and Lu, C.J., 2016. Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil, Applied Mathematical Modelling, 40(11-12), 5835–5857. doi: 10.1016/j.apm.2016.01.031
    [6] Chen, Y., Chen, X., Li, J., Gong, Z.X. and Lu, C.J., 2017. Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil, Ocean Engineering, 129, 1–19. doi: 10.1016/j.oceaneng.2016.11.012
    [7] Chen, Y., Li, J., Gong, Z.X., Chen, X. and Lu, C.J., 2019. Large eddy simulation and investigation on the laminar-turbulent transition and turbulence-cavitation interaction in the cavitating flow around hydrofoil, International Journal of Multiphase Flow, 112, 300–322. doi: 10.1016/j.ijmultiphaseflow.2018.10.012
    [8] Felli, M. and Di Felice, F., 2005. Propeller wake analysis in nonuniform inflow by LDV phase sampling techniques, Journal of Marine Science and Technology, 10(4), 159–172. doi: 10.1007/s00773-005-0201-6
    [9] Foeth, E.J., 2008. The Structure of Three-Dimensional Sheet Cavitation, Ph.D. Thesis, Delft University of Technology, Wageningen, the Netherlands.
    [10] Hunt, J.C.R., Wray, A.A. and Moin, P., 1988. Eddies, streams, and convergence zones in turbulent flows, Studying turbulence using numerical simulation databases, 2, Proceedings of the 1988 Summer Program, Stanford, CA.
    [11] Ji, B., Luo, X.W., Arndt, R.E.A., Peng, X.X. and Wu, Y.L., 2015. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil, International Journal of Multiphase Flow, 68, 121–134. doi: 10.1016/j.ijmultiphaseflow.2014.10.008
    [12] Ji, B., Luo, X.W., Peng, X.X., Wu, Y.L. and Xu, H.Y., 2012. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake, International Journal of Multiphase Flow, 43, 13–21. doi: 10.1016/j.ijmultiphaseflow.2012.02.006
    [13] Kerwin, J.E., 1986. Marine propellers, Annual Review of Fluid Mechanics, 18(1), 367–403. doi: 10.1146/annurev.fl.18.010186.002055
    [14] Kinnas, S.A., 1996. An international consortium on high-speed propulsion, Marine Technology and SNAME News, 33(3), 203–210.
    [15] Korkut, E. and Atlar, M., 2012. An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propeller, Ocean Engineering, 41, 1–12. doi: 10.1016/j.oceaneng.2011.12.012
    [16] Kumar, P. and Saini, R.P., 2010. Study of cavitation in hydro turbines-A review, Renewable and Sustainable Energy Reviews, 14(1), 374–383. doi: 10.1016/j.rser.2009.07.024
    [17] Launder, B.E., 1989. Second-moment closure: Present.. and future? International Journal of Heat Fluid Flow, 10(4), 282–300. doi: 10.1016/0142-727X(89)90017-9
    [18] Launder, B.E., Reece, G.J. and Rodi, W., 1975. Progress in the development of a Reynolds-stress turbulence closure, Journal of Fluid Mechanics, 68(3), 537–566. doi: 10.1017/S0022112075001814
    [19] Lien, F.S. and Leschziner, M.A., 1994. Assessment of turbulence-transport models including non-linear RNG eddy-viscosity formulation and second-moment closure for flow over a backward-facing step, Computers and Fluids, 23(8), 983–1004. doi: 10.1016/0045-7930(94)90001-9
    [20] Morgut, M., Jošt, D., Nobile, E. and Škerlavaj, A., 2015. Numerical Investigations of A Cavitating Propeller in Non-uniform Inflow, Ocean Engineering Group, Austin, Texas, USA.
    [21] Pennings, P., Westerweel, J. and Van Terwisga, T., 2016. Cavitation tunnel analysis of radiated sound from the resonance of a propeller tip vortex cavity, International Journal of Multiphase Flow, 83, 1–11. doi: 10.1016/j.ijmultiphaseflow.2016.03.004
    [22] Pereira, F., Salvatore, F. and Di Felice, F., 2004a. Measurement and modeling of propeller cavitation in uniform inflow, Journal of Fluids Engineering, 126(4), 671–679. doi: 10.1115/1.1778716
    [23] Pereira, F., Salvatore, F., Di Felice, F.D. and Elefante, M., 2002. Experimental and Numerical investigation of the cavitation pattern on a marine propeller, Proceedings of the 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan.
    [24] Pereira, F., Salvatore, F., Di Felice, F. and Soave, M., 2004b. Experimental investigation of a cavitating propeller in non-uniform inflow, Proceedings of the 25th ONR Symposium on Naval Hydrodynamics, St. John’s Newfoundland, Canada.
    [25] Pope, S.B., 2000. Turbulent Flows, Cambridge University Press, Cambridge.
    [26] Salvatore, F., Streckwall, H. and van Terwisga, T., 2009. Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome Workshop, Proceedings of the 1st International Symposium on Marine Propulsors, Trondheim, Norway.
    [27] Salvatore, F., Testa, C. and Greco, L., 2003. A viscous/inviscid coupled formulation for unsteady sheet cavitation modelling of marine propellers, Proceedings of the 5th International Symposium on Cavitation, Osaka, Japan.
    [28] Wang, L.Z., Guo, C.Y., Xu, P. and Su, Y.M., 2018. Analysis of the performance of an oscillating propeller in cavitating flow, Ocean Engineering, 164, 23–39. doi: 10.1016/j.oceaneng.2018.06.036
    [29] Wu, Q., Huang, B., Wang, G.Y., Cao, S.L. and Zhu, M.M., 2018. Numerical modelling of unsteady cavitation and induced noise around a marine propeller, Ocean Engineering, 160, 143–155. doi: 10.1016/j.oceaneng.2018.04.028
    [30] Yilmaz, N., Atlar, M. and Khorasanchi, M., 2019. An improved Mesh Adaption and Refinement approach to Cavitation Simulation (MARCS) of propellers, Ocean Engineering, 171, 139–150. doi: 10.1016/j.oceaneng.2018.11.001
    [31] Zhang, L.X. Zhang, N., Peng, X.X., Wang, B.L. and Shao, X.M., 2015. A review of studies of mechanism and prediction of tip vortex cavitation inception, Journal of Hydrodynamics, 27(4), 488–495. doi: 10.1016/S1001-6058(15)60508-X
    [32] Zhu, Z.F., Zhou, F., and Li, D., 2017. Numerical prediction of tip vortex cavitation for marine propellers in non-uniform wake, Chinese Journal of Mechanical Engineering, 30(4), 804–818. doi: 10.1007/s10033-017-0145-x
    [33] Zwart, P.J., Gerber, A.G. and Belamri, T., 2004. A two-phase flow model for predicting cavitation dynamics, Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan.
  • 加载中
图(15)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  113
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2020-04-17
  • 录用日期:  2020-05-24
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回