留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flow Behavior Behind A Freely Suspended Cylinder in the Wake of A Stationary Cylinder

GAO Yang-yang CHEN Wei-yi TAN Soon Keat ZHANG Bao-feng

GAO Yang-yang, CHEN Wei-yi, TAN Soon Keat, ZHANG Bao-feng. Flow Behavior Behind A Freely Suspended Cylinder in the Wake of A Stationary Cylinder[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 708-717. doi: 10.1007/s13344-020-0064-y
Citation: GAO Yang-yang, CHEN Wei-yi, TAN Soon Keat, ZHANG Bao-feng. Flow Behavior Behind A Freely Suspended Cylinder in the Wake of A Stationary Cylinder[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 708-717. doi: 10.1007/s13344-020-0064-y

Flow Behavior Behind A Freely Suspended Cylinder in the Wake of A Stationary Cylinder

doi: 10.1007/s13344-020-0064-y
More Information
  • Figure  1.  Schematic of the experimental setup of the two tandem cylinders.

    Figure  2.  Time history of non-dimensional transverse displacement of the downstream suspended cylinder at different U.

    Figure  3.  Time history of non-dimensional streamwise displacement of the downstream suspended cylinder at different U.

    Figure  4.  Motion trajectory of the freely suspended cylinder in the wake of a stationary one at different U.

    Figure  5.  Power Spectra of the x-y displacement of the downstream suspended cylinder at different U.

    Figure  6.  Instantaneous streamline topologies (top row) and vorticity contours (bottom row) behind the downstream suspended cylinder at U =0.27 m/s.

    Figure  10.  Instantaneous streamline topologies (top row) and vorticity contours (bottom row) behind the freely suspended cylinder at U =0.43 m/s.

    Figure  7.  Instantaneous streamline topologies (top row) and vorticity contours (bottom row) behind the freely suspended cylinder at U =0.3 m/s.

    Figure  8.  Instantaneous streamline topologies (top row) and vorticity contours (bottom row) behind the freely suspended cylinder at U =0.33 m/s.

    Figure  9.  Instantaneous streamline topologies (top row) and vorticity contours (bottom row) behind the freely suspended cylinder at U =0.37 m/s.

    Figure  11.  Mean velocities of the downstream cylinder.

  • [1] Assi, G.R.S., Meneghini, J.R., Aranha, J.A.P., Bearman, P.W. and Casaprima, E., 2006. Experimental investigation of flow-induced vibration interference between two circular cylinders, Journal of Fluids and Structures, 22(6–7), 819–827.
    [2] Bao, Y., Huang, C., Zhou, D., Tu, J.H. and Han, Z.L., 2012. Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios, Journal of Fluids and Structures, 35, 50–75. doi: 10.1016/j.jfluidstructs.2012.08.002
    [3] Borazjani, I. and Sotiropoulos, F., 2009. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region, Journal of Fluid Mechanics, 621, 321–364. doi: 10.1017/S0022112008004850
    [4] Brika, D. and Laneville, A., 1999. The flow interaction between a stationary cylinder and a downstream flexible cylinder, Journal of Fluids and Structures, 13(5), 579–606. doi: 10.1006/jfls.1999.0220
    [5] Carmo, B.S. and Meneghini, J.R., 2006. Numerical investigation of the flow around two circular cylinders in tandem, Journal of Fluids and Structures, 22(6–7), 979–988.
    [6] Carmo, B.S., Sherwin, S.J., Bearman, P.W. and Willden, R.H.J., 2011. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number, Journal of Fluids and Structures, 27(4), 503–522. doi: 10.1016/j.jfluidstructs.2011.04.003
    [7] Gao, Y.Y., Sun, Z.L., Tan, D.S., Yu, D.Y. and Tan, S.K., 2014. Wake flow behaviour behind a smaller cylinder oscillating in the wake of an upstream stationary cylinder, Fluid Dynamics Research, 46(2), 025505. doi: 10.1088/0169-5983/46/2/025505
    [8] Gao, Y.Y., Tan, D.S., Zhang, B.Z. and Tan, S.K., 2015. Experimental study on orbital response and flow behavior behind a freely suspended cylinder, Ocean Engineering, 108, 439–448. doi: 10.1016/j.oceaneng.2015.08.027
    [9] Huera-Huarte, F.J. and Gharib, M., 2011. Vortex- and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with far wake interference, Journal of Fluids and Structures, 27(5–6), 824–828.
    [10] Kim, S., Alam, M.M., Sakamoto, H. and Zhou, Y., 2009. Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: characteristics of vibration, Journal of Wind Engineering and Industrial Aerodynamics, 97(5–6), 304–311.
    [11] Lam, K. and Zou, L., 2010. Three-dimensional numerical simulations of cross-flow around four cylinders in an in-line square configuration, Journal of Fluids and Structures, 26(3), 482–502. doi: 10.1016/j.jfluidstructs.2010.01.001
    [12] Lau, Y.L., So, R.M.C. and Leung, R.C.K., 2004. Flow-induced vibration of elastic slender structures in a cylinder wake, Journal of Fluids and Structures, 19(8), 1061–1083. doi: 10.1016/j.jfluidstructs.2004.06.007
    [13] Mahir, N. and Rockwell, D., 1996. Vortex formation from a forced system of two cylinders. Part I: tandem arrangement, Journal of Fluids and Structures, 10(5), 473–489. doi: 10.1006/jfls.1996.0032
    [14] Norberg, C., 2003. Fluctuating lift on a circular cylinder: review and new measurements, Journal of Fluids and Structures, 17(1), 57–96. doi: 10.1016/S0889-9746(02)00099-3
    [15] Papaioannou, G.V., Yue, D.K.P., Triantafyllou, M.S. and Karniadakis, G.E., 2008. On the effect of spacing on the vortex-induced vibrations of two tandem cylinders, Journal of Fluids and Structures, 24(6), 833–854. doi: 10.1016/j.jfluidstructs.2007.11.006
    [16] Prasanth, T.K. and Mittal, S., 2009. Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re, Journal of Fluids and Structures, 25(6), 1029–1048. doi: 10.1016/j.jfluidstructs.2009.04.001
    [17] Price, S.J., Païdoussis, M.P. and Krishnamoorthy, S., 2007. Cross-flow past a pair of nearly in-line cylinders with the upstream cylinder subjected to a transverse harmonic oscillation, Journal of Fluids and Structures, 23(1), 39–57. doi: 10.1016/j.jfluidstructs.2006.07.006
    [18] Slaouti, A. and Gerrard, J.H., 1981. An experimental investigation of the end effects on the wake of a circular cylinder towed through water at low Reynolds numbers, Journal of Fluid Mechanics, 112, 297–314. doi: 10.1017/S0022112081000414
    [19] Sumner, D., 2010. Two circular cylinders in cross-flow: A review, Journal of Fluids and Structures, 26(6), 849–899. doi: 10.1016/j.jfluidstructs.2010.07.001
    [20] Wang, X.K., Gong, K., Liu, H., Zhang, J.X. and Tan, S.K., 2013. Flow around four cylinders arranged in a square configuration, Journal of Fluids and Structures, 43, 179–199. doi: 10.1016/j.jfluidstructs.2013.08.011
    [21] West, G.S. and Apelt, C.J., 1993. Measurements of fluctuating pressures and forces on a circular cylinder in the Reynolds number range 104 to 2.5×105, Journal of Fluids and Structures, 7(3), 227–244. doi: 10.1006/jfls.1993.1014
    [22] Xu, S.J., Zhou, Y. and Tu, J.Y., 2008. Two–dimensionality of a cantilevered-cylinder wake in the presence of an oscillating upstream cylinder, Journal of Fluids and Structures, 24(4), 467–480. doi: 10.1016/j.jfluidstructs.2007.10.006
    [23] Yang, X.F. and Zheng, Z.C., 2010. Nonlinear spacing and frequency effects of an oscillating cylinder in the wake of a stationary cylinder, Physics of Fluids, 22(4), 043601. doi: 10.1063/1.3372169
    [24] Zdravkovich, M.M., 1985. Flow induced oscillations of two interfering circular cylinders, Journal of Sound Vibration, 101(4), 511–521.
  • 加载中
图(11)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  101
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-12
  • 修回日期:  2020-08-18
  • 录用日期:  2020-09-08
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回