留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence Analysis and Vibration Restraint Solutions Research on the Underwater Acoustic Monitoring System

WANG Zhen ZHENG Yi MAO Yu-feng HE Chuan-lin GONG Jin-long HAO Zong-rui

WANG Zhen, ZHENG Yi, MAO Yu-feng, HE Chuan-lin, GONG Jin-long, HAO Zong-rui. Influence Analysis and Vibration Restraint Solutions Research on the Underwater Acoustic Monitoring System[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 718-729. doi: 10.1007/s13344-020-0065-x
Citation: WANG Zhen, ZHENG Yi, MAO Yu-feng, HE Chuan-lin, GONG Jin-long, HAO Zong-rui. Influence Analysis and Vibration Restraint Solutions Research on the Underwater Acoustic Monitoring System[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 718-729. doi: 10.1007/s13344-020-0065-x

Influence Analysis and Vibration Restraint Solutions Research on the Underwater Acoustic Monitoring System

doi: 10.1007/s13344-020-0065-x
More Information
  • Figure  1.  Configurations of test points and test direction.

    Figure  2.  Comparison of acceleration in different directions for each test point.

    Figure  3.  Configuration of flow restraint test for different materials.

    Figure  4.  Comparison of current velocity ratio with different materials.

    Figure  5.  Configuration of sound transmission test for different materials.

    Figure  6.  Test bracket with fairing of oxford fabric.

    Figure  7.  Comparison of sound transmission with different materials.

    Figure  8.  Configuration of multilayer fairing.

    Figure  9.  Comparison of hydrophone responses with and without fairing.

    Figure  10.  Schematic diagrams of four platform shapes.

    Figure  11.  Dimension of the computation flow field.

    Figure  12.  Variation of drag, lift and pitch moment coefficient.

    Figure  13.  Distribution of flow-induced noise test points.

    Figure  14.  Variation of flow-induced noise with the flow velocity.

    Figure  15.  Variation of flow-induced noise with the dimensions of tail spoiler.

    Figure  16.  Optimized floating body shape.

    Figure  17.  Brush cables.

    Figure  18.  Comparison of vibration response in soft material and large spacing distance.

    Figure  21.  Comparison of vibration response in hard material and small spacing distance.

    Figure  19.  Comparison of vibration response in hard material and large spacing distance.

    Figure  20.  Comparison of vibration response in soft material and small spacing distance.

    Figure  22.  Comparison of vibration responses in short brush and large spacing distance.

    Figure  23.  Comparison of vibration responses in short brush and small spacing distance.

    Figure  24.  Comparison of vibration responses in short brush and soft material.

    Figure  25.  Structure schematic of the measurement platform.

    Figure  26.  Brush cables and fairing of Platform-2.

    Figure  27.  Current velocity from July 9 to July 10.

    Figure  28.  Time-frequency spectrums from July 10 15:00 to 17:00.

    Figure  29.  Time-frequency spectrums from July 9 22:00 to July 10 00:00.

    Figure  30.  Positions of platforms and sound source.

    Figure  31.  DOA estimation of Platform-1 to the sound source.

    Figure  32.  DOA estimation of Platform-2 to the sound source.

    Table  1.   Configurations of four types fairing

    Type Material Number of layers Compactness degree Specification
    1 Oxford cloth 3 1 Densest
    2 Metal net 3 4 Sparsest
    3 Coarse spongy fabric 3 3 Denser than metal net
    4 Smooth spongy fabric 3 2 Sparser than Oxford cloth
    下载: 导出CSV

    Table  2.   Structural parameters of the brush cables

    No. Brush length (mm) Hardness Spacing distance (mm)
    1 60 Hard 10
    2 30 Hard 10
    3 30 Soft 10
    4 60 Soft 10
    5 30 Soft 5
    6 60 Soft 5
    7 60 Hard 5
    8 30 Hard 5
    下载: 导出CSV
  • [1] Ahmed, A.M.E. and Duan, W.Y., 2016. Overview on the development of autonomous underwater vehicles (AUVs), Journal of Ship Mechanics, 20(6), 768–787.
    [2] Dalton, C., Xu, Y. and Owen, J.C., 2001. The suppression of lift on a circular cylinder due to vortex shedding at moderate Reynolds numbers, Journal of Fluids and Structures, 15(3–4), 617–628.
    [3] Dewi, F.D.E., Liapis, S.I. and Plaut, R.H., 1999. Three-dimensional analysis of wave attenuation by a submerged, horizontal,bottom-mounted,flexible shell,Ocean Engineering, 26(9), 813–839.
    [4] Ghasemloonia, A., Rideout, D.G. and Butt, S.D., 2015. A review of drillstring vibration modeling and suppression methods, Journal of Petroleum Science and Engineering, 131, 150–164. doi: 10.1016/j.petrol.2015.04.030
    [5] Hawkes, M. and Nehorai, A., 2001. Acoustic vector-sensor ain ambient noise, IEEE Journal of Oceanic Engineering, 26(3), 337–347. doi: 10.1109/48.946508
    [6] Kandasamy, R., Cui, F.S., Townsend, N., Foo, C.C., Guo, J.Y., Shenoi, A. and Xiong, Y.P., 2016. A review of vibration control methods for marine offshore structures, Ocean Engineering, 127, 279–297. doi: 10.1016/j.oceaneng.2016.10.001
    [7] Lee, S.J., Lee, S.I. and Park, C.W., 2004. Reducing the drag on a circular cylinder by upstream installation of a small control rod, Fluid Dynamics Research, 34(4), 233–250. doi: 10.1016/j.fluiddyn.2004.01.001
    [8] Mavrakos, S.A. and Chatjigeorgiou, J., 1997. Dynamic behaviour of deep water mooring lines with submerged buoys, Computers & Structures, 64(1–4), 819–835.
    [9] Sakamoto, H. and Haniu, H., 1994. Optimum suppression of fluid forces acting on a circular cylinder, Journal of Fluids Engineering, 116(2), 221–227. doi: 10.1115/1.2910258
    [10] Sarpkaya, T., 2004. A critical review of the intrinsic nature of vortex-induced vibrations, Journal of Fluids and Structures, 19(4), 389–447. doi: 10.1016/j.jfluidstructs.2004.02.005
    [11] Shchurov, V.A., 1991. Coherent and diffusive fields of underwater acoustic ambient noise, The Journal of the Acoustical Society of America, 90(2), 991–1001. doi: 10.1121/1.401913
    [12] Shchurov, V.A., Kuleshov, V.P. and Cherkasov, A.V., 2011. Vortex properties of the acoustic intensity vector in a shallow sea, Acoustical Physics, 57(6), 851–856. doi: 10.1134/S1063771011060169
    [13] Shchurov, V.A., Kuleshov, V.P. and Tkachenko, E.S., 2010. Interference phase spectra of wideband surface source in the shallow sea, Proceedings of the 27th Session of the Russian Acoustical Society, Moscow.
    [14] Sherman, J., Davis, R.E., Owens, W.B. and Valdes, J., 2001. The autonomous underwater glider ‘Spray’, IEEE Journal of Oceanic Engineering, 26(4), 437–446. doi: 10.1109/48.972076
    [15] Wang, Z., Zheng, Y., Mao, Y.F., Wang, Y.Z., Yu, Y.T. and Liu, H.N., 2018. Research on hydrodynamic interference suppression of bottom-mounted monitoring platform with fairing structure, China Ocean Engineering, 32(1), 51–61. doi: 10.1007/s13344-018-0006-0
    [16] Zdravkovich, M.M., 1981. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding, Journal of Wind Engineering and Industrial Aerodynamics, 7(2), 145–189. doi: 10.1016/0167-6105(81)90036-2
  • 加载中
图(32) / 表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  76
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 修回日期:  2020-04-20
  • 录用日期:  2020-05-24
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回