留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Active Control of A Piston-Type Absorbing Wavemaker with Fully Reflective Structure

Saeed MAHJOURI Rasoul SHABANI Ghader REZAZADEH Peyman BADIEI

Saeed MAHJOURI, Rasoul SHABANI, Ghader REZAZADEH, Peyman BADIEI. Active Control of A Piston-Type Absorbing Wavemaker with Fully Reflective Structure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 730-737. doi: 10.1007/s13344-020-0066-9
Citation: Saeed MAHJOURI, Rasoul SHABANI, Ghader REZAZADEH, Peyman BADIEI. Active Control of A Piston-Type Absorbing Wavemaker with Fully Reflective Structure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 730-737. doi: 10.1007/s13344-020-0066-9

Active Control of A Piston-Type Absorbing Wavemaker with Fully Reflective Structure

doi: 10.1007/s13344-020-0066-9
More Information
  • Figure  1.  Schematics of two dimensional wave flume.

    Figure  2.  Block diagram of the implemented absorbing wavemaker algorithm.

    Figure  3.  Experimental wave flume, a) Schematic cross-sectional view, b and c) Pictures of the installed wavemaker and flume.

    Figure  4.  Natural periods of the system.

    Figure  5.  First three mode shapes of the wave tank.

    Figure  6.  Frequency response of the wave flume.

    Figure  7.  Experimental results for forcing wave period T=1.2 s.

    Figure  8.  Experimental results for forcing wave period T=3 s.

    Figure  9.  Comparison of the experimental results with and without absorption loop when the desired wave period is T=1.2 s and its amplitude is 40 mm.

    Figure  10.  Comparison of the experimental results with and without absorption when the desired wave period is T=3 s and its amplitude is 40 mm.

    Figure  11.  Comparison of the experimental results in irregular wave conditions with and without absorption, when the forcing period T=1.8 s.

    Figure  12.  Comparison of the experimental results in irregular wave conditions with and without absorption, when the forcing period T=2 s.

  • [1] Anbarsooz, M., Passandideh-Fard, M. and Moghiman, M., 2013. Fully nonlinear viscous wave generation in numerical wave tanks, Ocean Engineering, 59, 73–85. doi: 10.1016/j.oceaneng.2012.11.011
    [2] Belden, J. and Techet, A.H., 2011. Simultaneous quantitative flow measurement using PIV on both sides of the air-water interface for breaking waves, Experiments in Fluids, 50(1), 149–161. doi: 10.1007/s00348-010-0901-5
    [3] Bullock, G.N. and Murton, G.J., 1989. Performance of a wedge-type absorbing wave maker, Journal of Waterway,Port,Coastal,and Ocean Engineering, 115(1), 1–17. doi: 10.1061/(ASCE)0733-950X(1989)115:1(1)
    [4] Christensen, M. and Frigaard, P., 1994. Design of absorbing wavemaker based on digital filters, Proceedings of International Symposium: Waves-Physical and Numerical Modelling, Vancouver, pp. 100–109.
    [5] Clément, A., 1996. Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves, Journal of Computational Physics, 126(1), 139–151. doi: 10.1006/jcph.1996.0126
    [6] De Mello, P.C., Carneiro, M.L., Tannuri, E.A., Kassab Jr., F., Marques, R.P., Adamowski, J.C. and Nishimoto, K., 2013. A control and automation system for wave basins, Mechatronics, 23(1), 94–107. doi: 10.1016/j.mechatronics.2012.11.004
    [7] Higuera, P., Lara, J.L. and Losada, I.J., 2013. Realistic wave generation and active wave absorption for navier-stokes models: application to OpenFOAM®, Coastal Engineering, 71, 102–118. doi: 10.1016/j.coastaleng.2012.07.002
    [8] Hirakuchi, H., Kajima, R. and Kawaguchi, T., 1990. Application of a piston-type absorbing wavemaker to irregular wave experiments, Coastal Engineering in Japan, 33(1), 11–24. doi: 10.1080/05785634.1990.11924520
    [9] Khait, A. and Shemer, L., 2019. Nonlinear wave generation by a wavemaker in deep to intermediate water depth, Ocean Engineering, 182, 222–234. doi: 10.1016/j.oceaneng.2019.04.065
    [10] Lin, P.Z. and Liu, P.L.F., 1999. Internal wave-maker for navier-stokes equations models, Journal of Waterway,Port,Coastal,and Ocean Engineering, 125(4), 207–215. doi: 10.1061/(ASCE)0733-950X(1999)125:4(207)
    [11] Milgram, J.H., 1970. Active water-wave absorbers, Journal of Fluid Mechanics, 42(4), 845–859. doi: 10.1017/S0022112070001635
    [12] Ouellet, Y. and Datta, I., 1986. A survey of wave absorbers, Journal of Hydraulic Research, 24(4), 265–280. doi: 10.1080/00221688609499305
    [13] Saincher, S. and Banerjee, J., 2015. Design of a numerical wave tank and wave flume for low steepness waves in deep and intermediate water, Procedia Engineering, 116, 221–228. doi: 10.1016/j.proeng.2015.08.394
    [14] Salter, S.H., 1981. Absorbing wave makers and wide tanks, Proceedings of Conference on Directional Wave Spectra Applications, Berkeley, California, USA, pp. 185–202.
    [15] Schäffer, H.A., 2001. Active wave absorption in flumes and 3D basins, Proceedings of the 4th International Symposium on Ocean Wave Measurement and Analysis, San Francisco.
    [16] Schäffer, H.A. and Klopman, G., 2000. Review of multidirectional active wave absorption methods, Journal of Waterway,Port,Coastal,and Ocean Engineering, 126(2), 88–97. doi: 10.1061/(ASCE)0733-950X(2000)126:2(88)
    [17] Schäffer, H.A. and Jakobsen, K.P., 2003. Non-linear wave generation and active absorption in wave flumes, Proceedings of Long Waves Symposium 2003 in Parallel with XXX IAHR Congress, Greece, pp. 69–77.
    [18] Senturk, U., 2011. Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method, Computers & Fluids, 44(1), 221–228.
    [19] Sheng, W.A. and Li, H., 2017. A method for energy and resource assessment of waves in finite water depths, Energies, 10(4), 460. doi: 10.3390/en10040460
    [20] Spinneken, J. and Swan, C., 2009a. Second-order wave maker theory using force-feedback control. Part I: A new theory for regular wave generation, Ocean Engineering, 36(8), 539–548. doi: 10.1016/j.oceaneng.2009.01.019
    [21] Spinneken, J. and Swan, C., 2009b. Second-order wave maker theory using force-feedback control. Part Ⅱ: an experimental verification of regular wave generation, Ocean Engineering, 36(8), 549–555. doi: 10.1016/j.oceaneng.2009.01.007
    [22] Spinneken, J. and Swan, C., 2012. The operation of a 3D wave basin in force control, Ocean Engineering, 55, 88–100. doi: 10.1016/j.oceaneng.2012.07.024
    [23] Stagonas, D., Warbrick, D., Muller, G. and Magagna, D., 2011. Surface tension effects on energy dissipation by small scale, experimental breaking waves,Coastal Engineering, 58(9), 826–836.
    [24] Yang, H.Q., Li, M.G., Liu, S.X. and Chen, F.M., 2016. An iterative re-weighted least-squares algorithm for the design of active absorbing wavemaker controller, Journal of Hydrodynamics, 28(2), 206–218. doi: 10.1016/S1001-6058(16)60622-4
    [25] Yang, H.Q., Li, M.G., Liu, S.X., Zhang, Q. and Wang, J., 2015. A piston-type active absorbing wavemaker system with delay compensation, China Ocean Engineering, 29(6), 917–924. doi: 10.1007/s13344-015-0064-5
    [26] Yueh, C.Y. and Chuang, S.H., 2013. A piston-type porous wave energy converter theory, Journal of Marine Science and Technology, 21(3), 309–317.
  • 加载中
图(12)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  100
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-05-23
  • 录用日期:  2020-06-30
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回