留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the Overload and Dwell-Fatigue Property of Titanium Alloy in Manned Deep Submersible

WANG Ke WU Li LI Yong-zheng SUN Xiao-peng

WANG Ke, WU Li, LI Yong-zheng, SUN Xiao-peng. Study on the Overload and Dwell-Fatigue Property of Titanium Alloy in Manned Deep Submersible[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 738-745. doi: 10.1007/s13344-020-0067-8
Citation: WANG Ke, WU Li, LI Yong-zheng, SUN Xiao-peng. Study on the Overload and Dwell-Fatigue Property of Titanium Alloy in Manned Deep Submersible[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 738-745. doi: 10.1007/s13344-020-0067-8

Study on the Overload and Dwell-Fatigue Property of Titanium Alloy in Manned Deep Submersible

doi: 10.1007/s13344-020-0067-8
More Information
  • Figure  1.  Tensile test specimen geometry (unit: mm).

    Figure  2.  Schematic with CT sample sizes (unit: mm).

    Figure  3.  Constant load spectrum of fatigue and dwell fatigue.

    Figure  4.  Overload dwell-fatigue load.

    Figure  5.  Test instrumentations.

    Figure  6.  aN curves under constant amplitude loading.

    Figure  7.  Fatigue crack growth rates under constant amplitude loading.

    Figure  8.  Fatigue crack growth under different dwell time and OLRs.

    Figure  9.  Comparison between the prediction and experiments under constant amplitude loading.

    Figure  10.  Crack growth rate with OLR=1.2.

    Figure  11.  Crack growth rate with OLR=1.5.

    Table  1.   Chemical composition of Ti-6Al-4V (wt%)

    Ti Al V Fe C N H O
    Base 6.2 4.1 0.12 0.01 0.01 0.002 0.11
    下载: 导出CSV

    Table  2.   Tensile properties of Ti-6Al-4V

    No. d (mm) Fm (kN) Yield strength RP0.2 (MPa) Ultimate strength Rm (MPa) Elastic modulus E (MPa) Elongation A(%)
    #1 10 84.83 1032.86 1080.12 131838.18 15.44
    #2 9.98 82.79 1025.45 1058.3 131628.25 7.14
    #3 9.98 83.67 1023.75 1069.57 131404.9 13.46
    Average 9.99 83.76 1027.35 1069.33 131623.78 12.01
    下载: 导出CSV

    Table  3.   Fracture toughness test data of titanium alloy Ti-6Al-4V

    No. #1 #2 #3 Average
    KIC( ${\rm{MPa}}\sqrt {\rm{m}} $) 61.278 62.371 63.277 62.278
    下载: 导出CSV

    Table  4.   Experimental results of transient zone size (mm)

    Fatigue type Overload ratio
    OLR=1.2 OLR=1.5
    Without dwell time 0.325 0.795
    Dwell time=10 s 0.617 0.945
    Dwell time=60 s 0.752 1.238
    下载: 导出CSV

    Table  5.   Model parameters

    Parameter Value Parameter Value Parameter Value
    ${A_1}$ $\left({{\rm{MPa}}{^{ - {m_1}}}{{\rm{m}}^{1 - {m_1}/2}}} \right)$ 5×10−9 ${{\textit{σ}} _{\rm{u}}}$(MPa) 1069 k (m−1) 20874
    ${A_2}$ $\left({{\rm{MPa}}{^{ - {m_2}}}{{\rm{m}}^{1 - {m_2}/2}}{{\rm{s}}^{ - 1}}} \right)$ 2.2×10−12 ${n_1}$ 6 $n$ 14.96
    $\Delta {K_{{\rm{thR}}}}$ $\left({{\rm{MPa}}\sqrt {\rm{m}} } \right)$ 5.6 ${n_2}$ 9 $B$ 4.79×10−53
    $\Delta {K_{{\rm{th - s}}}}$ $\left({{\rm{MPa}}\sqrt {\rm{m}} } \right)$ 1.1 ${m_1}$ 3.62 $E$(MPa) 131624
    ${K_{\rm{C}}}$ $\left({{\rm{MPa}}\sqrt {\rm{m}} } \right)$ 62.278 ${m_2}$ 2 $In$ 3.7925
    ${{\textit{σ}} _{\rm{y}}}$(MPa) 1027 R 0.03 ${F_{{\rm{cr}}}}_{\left({\textit{θ}} \right)}$ 0.3985
    下载: 导出CSV

    Table  6.   Experimental results and predicted results of transient zone size

    Fatigue type Overload ratio Experiment (mm) Prediction (mm) Error (%)
    Without dwell time OLR=1.2 0.325 0.608 46.54
    OLR=1.5 0.795 0.863 7.87
    Dwell time =10 s OLR=1.2 0.617 0.633 2.52
    OLR=1.5 0.945 1.091 13.38
    Dwell time=60 s OLR=1.2 0.752 0.794 5.29
    OLR=1.5 1.238 1.043 18.69
    下载: 导出CSV
  • [1] Chen, C.R., 2002. Fatigue and Fracture, Huazhong University of Science and Technology Press, Wuhan, China. (in Chinese)
    [2] Chen, F.L., Wang, F. and Cui, W.C., 2011. An improved constitutive model to predict fatigue crack growth rate under constant-amplitude loading with single and multiple overload, Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment, 225(3), 271–281. doi: 10.1177/1475090211405760
    [3] Cui, W.C., Wang, F. and Huang, X.P., 2011. A unified fatigue life prediction method for marine structures, Marine Structures, 24(2), 153–181. doi: 10.1016/j.marstruc.2011.02.007
    [4] Irwin, G.R., 1960. Fracture mode transition for a crack traversing a plate, Journal of Basic Engineering, 82(2), 417–423. doi: 10.1115/1.3662608
    [5] Jono, M., Sugeta, A. and Uematsu, Y., 1999. Fatigue crack growth and crack closure behavior of Ti-6AI-4V alloy under variable-amplitude loadings, in: Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume. ASTM Special Technical Publication 1343, McClung, R.C., Newman, J.C. Jr. (eds.), pp.987−1006.
    [6] Lei, H.G., Fu, Q. and Liu, X.J., 2010. Progress in fatigue research of steel structures in China in the past 30 years, Journal of Building Structures, (S1), 84–91. (in Chinese)
    [7] Li, X.Y., 2015. Research on Fatigue Crack Propagation Behavior Under A Single Tensile Overload, MSc. Thesis, Hefei University of Technology, Hefei, China. (in Chinese)
    [8] Potirniche, G.P., 2019. A closure model for predicting crack growth under creep-fatigue loading, International Journal of Fatigue, 125, 58–71. doi: 10.1016/j.ijfatigue.2019.03.029
    [9] Rege, K., Gronsund, J. and Pavlou, D.G., 2019. Mixed-mode I and II fatigue crack growth retardation due to overload: An experimental study, International Journal of Fatigue, 129, 105227. doi: 10.1016/j.ijfatigue.2019.105227
    [10] Riedel, H. and Rice, J.R., 1980. Tensile crack in creeping solids, Fracture Mechanics: Twelfth Conference, ASTM STP 700, American Society for Testing and Materials, 112-30.
    [11] Schijve, J. and Broek, D., 1962. Crack propagation: The results of a test Programme based on a gust spectrum with variable amplitude loading, Aircraft Engineering and Aerospace Technology, 34(11), 314–316. doi: 10.1108/eb033633
    [12] Silva, F.S., 2007. Fatigue crack propagation after overloading and underloading at negative stress rations, International Journal of Fatigue, 29(9−11), 1757–1771.
    [13] Sunder, R., Biakov, A., Eremin A. and Panin, S., 2016. Synergy of crack closure. near-tip residual stress and crack-tip blunting in crack growth under periodic overloads-A fractographic study, International Journal of Fatigue, 93, 18–29. doi: 10.1016/j.ijfatigue.2016.08.004
    [14] Wang, K., 2015. Study on the Cold Dwell-Fatigue Life Prediction Method for Titanium Alloys, Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China. (in Chinese)
    [15] Wang, K., Wang, F., Cui, W.C. and Li, D.Q., 2014a. Prediction of short fatigue crack growth life by unified fatigue life prediction method, Journal of Ship Mechanics, 18(6), 678–689.
    [16] Wang, K., Wang, F., Cui, W.C., Hayat, T. and Ahmad, B., 2014b. Prediction of short fatigue crack growth of Ti-6Al-4V, Fatigue & Fracture of Engineering Materials & Structures, 37(10), 1075–1086.
    [17] Wang, K., Wang, Z., Wang, F. and Cui, W.C., 2017. Effect of overload and dwell time on fatigue crack growth rate of metal materials, Journal of Ship Mechanics, 21(7), 895–906. (in Chinese)
    [18] Wu, Y.Z. and Bao, R., 2018. Fatigue crack tip strain evolution and crack growth prediction under single overload in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy, International Journal of Fatigue, 116, 462–472. doi: 10.1016/j.ijfatigue.2018.07.011
    [19] Yumak, N. and Aslantas, K., 2019. Effect of notch orientation and single overload on crack interaction in Ti-6Al-4V alloy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 318. doi: 10.1007/s40430-019-1816-6
    [20] Zhao, T.W., Zhang, J.X. and Jiang, Y.Y., 2008. A study of fatigue crack growth of 7075-T651 aluminum alloy, International Journal of Fatigue, 30(7), 1169–1180. doi: 10.1016/j.ijfatigue.2007.09.006
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  114
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-05
  • 修回日期:  2020-06-11
  • 录用日期:  2020-07-22
  • 网络出版日期:  2021-05-12
  • 发布日期:  2020-12-10

目录

    /

    返回文章
    返回