Study on the Overload and Dwell-Fatigue Property of Titanium Alloy in Manned Deep Submersible
doi: 10.1007/s13344-020-0067-8
-
Abstract: With the rapid development of ocean technology, the deep-sea manned submersible is regarded as a high-tech equipment for the exploration and exploitation of ocean resources. The safety of manned cabin has a decisive effect on the whole system. Ti-6Al-4V with the superior strength-to-weight ratio and corrosion resistance has been used for the manned cabin. The manned cabin experiences loading spectrum with different maximum stresses and different dwell time during their service life. The load sequence effects on dwell fatigue crack growth behavior of Ti-6Al-4V under different dwell time are investigated experimentally in this paper. The experimental results show that the crack tip plastic zone is enlarged by the dwell time and the overload retardation zone increases with dwell time under the same overload rate. A dwell fatigue crack growth model is proposed by modifying the crack tip plastic zone under the loading history with combinations of the single overload and dwell time factors are included in the modified model. Based on the experimental data, the overload retardation zone and the crack growth rates of Ti-6Al-4V are predicted by the modified model. A reasonable model for the load sequence effect on the dwell fatigue crack growth rates of Ti-6Al-4V is verified.
-
Key words:
- manned cabin /
- dwell fatigue crack growth rate /
- Ti-6Al-4V /
- load sequence effect
-
Table 1. Chemical composition of Ti-6Al-4V (wt%)
Ti Al V Fe C N H O Base 6.2 4.1 0.12 0.01 0.01 0.002 0.11 Table 2. Tensile properties of Ti-6Al-4V
No. d (mm) Fm (kN) Yield strength RP0.2 (MPa) Ultimate strength Rm (MPa) Elastic modulus E (MPa) Elongation A(%) #1 10 84.83 1032.86 1080.12 131838.18 15.44 #2 9.98 82.79 1025.45 1058.3 131628.25 7.14 #3 9.98 83.67 1023.75 1069.57 131404.9 13.46 Average 9.99 83.76 1027.35 1069.33 131623.78 12.01 Table 3. Fracture toughness test data of titanium alloy Ti-6Al-4V
No. #1 #2 #3 Average KIC( ${\rm{MPa}}\sqrt {\rm{m}} $) 61.278 62.371 63.277 62.278 Table 4. Experimental results of transient zone size (mm)
Fatigue type Overload ratio OLR=1.2 OLR=1.5 Without dwell time 0.325 0.795 Dwell time=10 s 0.617 0.945 Dwell time=60 s 0.752 1.238 Table 5. Model parameters
Parameter Value Parameter Value Parameter Value ${A_1}$ $\left({{\rm{MPa}}{^{ - {m_1}}}{{\rm{m}}^{1 - {m_1}/2}}} \right)$ 5×10−9 ${{\textit{σ}} _{\rm{u}}}$(MPa) 1069 k (m−1) 20874 ${A_2}$ $\left({{\rm{MPa}}{^{ - {m_2}}}{{\rm{m}}^{1 - {m_2}/2}}{{\rm{s}}^{ - 1}}} \right)$ 2.2×10−12 ${n_1}$ 6 $n$ 14.96 $\Delta {K_{{\rm{thR}}}}$ $\left({{\rm{MPa}}\sqrt {\rm{m}} } \right)$ 5.6 ${n_2}$ 9 $B$ 4.79×10−53 $\Delta {K_{{\rm{th - s}}}}$ $\left({{\rm{MPa}}\sqrt {\rm{m}} } \right)$ 1.1 ${m_1}$ 3.62 $E$(MPa) 131624 ${K_{\rm{C}}}$ $\left({{\rm{MPa}}\sqrt {\rm{m}} } \right)$ 62.278 ${m_2}$ 2 $In$ 3.7925 ${{\textit{σ}} _{\rm{y}}}$(MPa) 1027 R 0.03 ${F_{{\rm{cr}}}}_{\left({\textit{θ}} \right)}$ 0.3985 Table 6. Experimental results and predicted results of transient zone size
Fatigue type Overload ratio Experiment (mm) Prediction (mm) Error (%) Without dwell time OLR=1.2 0.325 0.608 46.54 OLR=1.5 0.795 0.863 7.87 Dwell time =10 s OLR=1.2 0.617 0.633 2.52 OLR=1.5 0.945 1.091 13.38 Dwell time=60 s OLR=1.2 0.752 0.794 5.29 OLR=1.5 1.238 1.043 18.69 -
[1] Chen, C.R., 2002. Fatigue and Fracture, Huazhong University of Science and Technology Press, Wuhan, China. (in Chinese) [2] Chen, F.L., Wang, F. and Cui, W.C., 2011. An improved constitutive model to predict fatigue crack growth rate under constant-amplitude loading with single and multiple overload, Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment, 225(3), 271–281. doi: 10.1177/1475090211405760 [3] Cui, W.C., Wang, F. and Huang, X.P., 2011. A unified fatigue life prediction method for marine structures, Marine Structures, 24(2), 153–181. doi: 10.1016/j.marstruc.2011.02.007 [4] Irwin, G.R., 1960. Fracture mode transition for a crack traversing a plate, Journal of Basic Engineering, 82(2), 417–423. doi: 10.1115/1.3662608 [5] Jono, M., Sugeta, A. and Uematsu, Y., 1999. Fatigue crack growth and crack closure behavior of Ti-6AI-4V alloy under variable-amplitude loadings, in: Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume. ASTM Special Technical Publication 1343, McClung, R.C., Newman, J.C. Jr. (eds.), pp.987−1006. [6] Lei, H.G., Fu, Q. and Liu, X.J., 2010. Progress in fatigue research of steel structures in China in the past 30 years, Journal of Building Structures, (S1), 84–91. (in Chinese) [7] Li, X.Y., 2015. Research on Fatigue Crack Propagation Behavior Under A Single Tensile Overload, MSc. Thesis, Hefei University of Technology, Hefei, China. (in Chinese) [8] Potirniche, G.P., 2019. A closure model for predicting crack growth under creep-fatigue loading, International Journal of Fatigue, 125, 58–71. doi: 10.1016/j.ijfatigue.2019.03.029 [9] Rege, K., Gronsund, J. and Pavlou, D.G., 2019. Mixed-mode I and II fatigue crack growth retardation due to overload: An experimental study, International Journal of Fatigue, 129, 105227. doi: 10.1016/j.ijfatigue.2019.105227 [10] Riedel, H. and Rice, J.R., 1980. Tensile crack in creeping solids, Fracture Mechanics: Twelfth Conference, ASTM STP 700, American Society for Testing and Materials, 112-30. [11] Schijve, J. and Broek, D., 1962. Crack propagation: The results of a test Programme based on a gust spectrum with variable amplitude loading, Aircraft Engineering and Aerospace Technology, 34(11), 314–316. doi: 10.1108/eb033633 [12] Silva, F.S., 2007. Fatigue crack propagation after overloading and underloading at negative stress rations, International Journal of Fatigue, 29(9−11), 1757–1771. [13] Sunder, R., Biakov, A., Eremin A. and Panin, S., 2016. Synergy of crack closure. near-tip residual stress and crack-tip blunting in crack growth under periodic overloads-A fractographic study, International Journal of Fatigue, 93, 18–29. doi: 10.1016/j.ijfatigue.2016.08.004 [14] Wang, K., 2015. Study on the Cold Dwell-Fatigue Life Prediction Method for Titanium Alloys, Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China. (in Chinese) [15] Wang, K., Wang, F., Cui, W.C. and Li, D.Q., 2014a. Prediction of short fatigue crack growth life by unified fatigue life prediction method, Journal of Ship Mechanics, 18(6), 678–689. [16] Wang, K., Wang, F., Cui, W.C., Hayat, T. and Ahmad, B., 2014b. Prediction of short fatigue crack growth of Ti-6Al-4V, Fatigue & Fracture of Engineering Materials & Structures, 37(10), 1075–1086. [17] Wang, K., Wang, Z., Wang, F. and Cui, W.C., 2017. Effect of overload and dwell time on fatigue crack growth rate of metal materials, Journal of Ship Mechanics, 21(7), 895–906. (in Chinese) [18] Wu, Y.Z. and Bao, R., 2018. Fatigue crack tip strain evolution and crack growth prediction under single overload in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy, International Journal of Fatigue, 116, 462–472. doi: 10.1016/j.ijfatigue.2018.07.011 [19] Yumak, N. and Aslantas, K., 2019. Effect of notch orientation and single overload on crack interaction in Ti-6Al-4V alloy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 318. doi: 10.1007/s40430-019-1816-6 [20] Zhao, T.W., Zhang, J.X. and Jiang, Y.Y., 2008. A study of fatigue crack growth of 7075-T651 aluminum alloy, International Journal of Fatigue, 30(7), 1169–1180. doi: 10.1016/j.ijfatigue.2007.09.006