[1] |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71:209-249
|
[2] |
Masuda N, Lee SJ, Im YH, Lee ES, Yokata I, Kuroi K, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. New Engl J Med 2007; 376:2147-2159
|
[3] |
Alberro JA, Ballester B, Deulofeu P, Fabregas R, Liombart HA. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer:meta-analysis of individual patient data from ten randomised trials. Lancet Oncol 2018; 19:27-39
|
[4] |
Qu Y, Chu B, Wei X, Lei M, Hu D, Zha R, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019; 296:93-106
|
[5] |
Li X, Yang X, Lin Z, Wang D, Mei D, He B, et al. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur J Pharm Sci 2015; 76:95-101
|
[6] |
Roduner E. Size matters:why nanomaterials are different. Chem Soc Rev 2006; 35:583-592
|
[7] |
Zhou M, Zhang X, Xu X, Chen X, Zhang X. Doxorubicin@Bcl-2 siRNA core@shell nanoparticles for synergistic anticancer chemotherapy. ACS Appl Bio Mater 2018; 1:289-297
|
[8] |
Ma W, Su H, Cheetham A, Zhang W, Wang Y, Kan Q, et al. Synergistic antitumor activity of a self-assembling camptothecin and capecitabine hybrid prodrug for improved efficacy. J Control Release 2017; 263:102-111
|
[9] |
Chu B, Qu Y, He X, Hao Y, Yang C, Yang Y, et al. ROS-responsive camptothecin prodrug nanoparticles for on-demand drug release and combination of chemotherapy and photodynamic therapy. Adv Funct Mater 2020; 52:2005918
|
[10] |
Hou S, Zhou S, Chen S, Lu Q. Polyphosphazene-based drug self-framed delivery system as a universal intelligent platform for combination therapy against multidrug-resistant tumors. ACS Appl Bio Mater 2020; 4:2284-2294
|
[11] |
Wu Y, Lv S, Li Y, He H, Ji Y, Zheng M, et al. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater Sci 2020; 3:949-959
|
[12] |
Zhi D, Yang T, Justin O, Zhang S, Donnelly RF. Photothermal therapy. J Control Release 2020; 325:52-71
|
[13] |
Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17:657-674
|
[14] |
Vankayala R, Hwang KC. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines:an emerging paradigm for cancer treatment. Adv Mater 2018; 30:1706320
|
[15] |
Chen X, Zou J, Zhang K, Zhu J, Zhang Y, Zhu Z, et al. Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breastcancer treatment. Acta Pharm Sin B 2021; 11:271-282
|
[16] |
Zhou J, Li M, Hou Y, Luo Z, Chen Q, Cao H, et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 2018; 12:2858-2872
|
[17] |
Tao W, Ji X, Xu X, Islam MA, Li Z, Chen S, et al. Antimonene quantum dots:synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew Chem Int Ed 2017; 56:11896-11900
|
[18] |
Ouyang J, Feng C, Ji X, Li L, Gutti HK, Kim NY, et al. 2D monoelemental germanene quantum dots:synthesis as robust photothermal agents for photonic cancer nanomedicine. Angew Chem Int Ed 2019; 58:13405-13410
|
[19] |
Cai X, Jia X, Gao W, Zhang K, Ma M, Wang S, et al. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy. Adv Funct Mater 2015; 25:2520-2529
|
[20] |
Hu K, Xie L, Zhang Y, Hanyu M, Yang Z, Nagatsu K, et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat Commun 2020; 11:2778
|
[21] |
Ulukan H, Swaan PW. Camptothecins-a review of their chemotherapeutic potential. Drugs 2002; 62:2039-2057
|
[22] |
Dai M, Xu X, Song J, Fu S, Gou M, Luo F, et al. Preparation of camptothecin-loaded PCEC microspheres for the treatment of colorectal peritoneal carcinomatosis and tumor growth in mice. Cancer Lett 2011; 312:189-196
|
[23] |
Zhang H, Zhu J, Chu B, Chen L, Shi K, Zhang L, et al. Preparation, characterization and in vivo antitumor evaluation of a micellar formulation of camptothecin prodrug. Nanosci Nanotechnol Lett 2017; 9:1755-1766
|
[24] |
Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release 2013; 172:48-61
|
[25] |
Wen Y, Wang Y, Liu X, Zhang W, Xiong X, Han Z, et al. Camptothecin-based nanodrug delivery systems. Cancer Biol Med 2017; 14:363-370
|
[26] |
Botella P, Rivero-Buceta E. Safe approaches for camptothecin delivery:structural analogues and nanomedicines. J Control Release 2017; 247:28-54
|
[27] |
Wang-Gillam A, Li C, Bodoky G, Dean A, Shan Y, Jameson G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1):a global, randomised, open-label, phase 3 trial. Lancet 2016; 387:545-557
|
[28] |
Poveda A, Selle F, Hilpert F, Reuss A, Savarese A, Vergote I, et al. Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer:analysis by chemotherapy cohort of the randomized phase III AURELIA trial. J Clin Oncol 2015; 33:3836-3838
|
[29] |
Shi L, Hu Y, Lin A, Ma C, Zhang C, Su Y, et al. Matrix metalloproteinase responsive nanoparticles for synergistic treatment of colorectal cancer simultaneous anti-angiogenesis and chemotherapy. Bioconjugate Chem 2016; 27:2943-2953
|
[30] |
Yu H, He J, Lu Q, Huo D, Yuan S, Zhou Z, et al. Anti-Fas antibody conjugated nanoparticles enhancing the antitumor effect of camptothecin by activating the Fas-FasL apoptotic pathway. ACS Appl Mater Interfaces 2016; 8:29950-29959
|
[31] |
Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, et al. Polyprodrug amphiphiles:hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc 2013; 135:17617-17629
|
[32] |
Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin L, et al. Hierarchical tumor microenvironment-responsive nanomedicine for programmed delivery of chemotherapeutics. Adv Mater 2018; 30:1803926
|
[33] |
Lee MH, Yang Z, Lim CW, Lee YH, Dongbang S, Kang C, et al. Disulfide- cleavage-triggered chemosensors and their biological applications. Chem Rev 2013; 113:5071-5109
|
[34] |
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol Med 2001; 30:1191-1212
|
[35] |
Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, et al. Synthesis of prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed Engl 2012; 51:984-988
|
[36] |
Buser HJ, Schwarzenbach D, Petter W, Ludi A. The crystal structure of prussian blue:Fe4[Fe(CN)6]3·xH2O. Inorg Chem 1977; 16:2704-2710
|
[37] |
Busquets MA, Estelrich J. Prussian blue nanoparticles:synthesis, surface modification, and biomedical applications. Drug Discov Today 2020; 25:1431-1443
|
[38] |
Liu Z, Liu J, Wang R, Du Y, Ren J, Qu X. An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract. Biomaterials 2015; 56:206-218
|
[39] |
Zhu W, Gao M, Zhu Q, Chi B, Zeng L, Hu J, et al. Monodispersed plasmonic prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy. Nanoscale 2020; 6:3292-3301
|
[40] |
Wang Y, Pang X, Wang J, Chen Y, Song Y, Sun Q, et al. Magnetically-targeted and near infrared fluorescence/magnetic resonance/photoacoustic imaging-guided combinational anti-tumor phototherapy based on polydopamine-capped magnetic prussian bluenanoparticles. J Mater Chem 2018; 6:2460-2473
|
[41] |
Lv S, Miao Y, Liu D, Song F. Recent development of photothermal agents (PTAs) based on small organic molecular dyes. Chembiochem 2020; 21:2098-2110
|
[42] |
Song X, Gong H, Liu T, Cheng L, Wang C, Sun X, et al. J-Aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915 nm light. Small 2014; 10:4362-4370
|
[43] |
Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, et al. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013; 7:2056-2067
|
[44] |
Fernandes N, Rodrigues C, Moreira A, Corrria IJ. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater Sci 2020; 8:2990-3020
|
[45] |
Song X, Wang X, Yu S, Cao J, Li S, Li J, et al. Co9Se8 Nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv Mater 2015; 27:3285-3291
|
[46] |
Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 2016; 7:12967
|
[47] |
Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 2014; 26:1886-1893
|
[48] |
Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 2009; 8:935-939
|
[49] |
Liang X, Deng Z, Jing L, Li X, Dai Z, Li C, et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging. Chem Commun 2013; 49:11029-11031
|
[50] |
Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, et al. PEGylated prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 2014; 35:9844-9852
|
[51] |
Zhu W, Liu K, Sun X, Wang X, Li Y, Cheng L, et al. Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. ACS Appl Mater Interfaces 2015; 7:11575-11582
|
[52] |
Guo C, Jin Y, Dai Z. Multifunctional ultrasound contrast agents for imaging guided photothermal therapy. Bioconjug Chem 2014; 25:840-854
|
[53] |
Peng J, Dong M, Ran B, Li W, Hao Y, Yang Q, et al. "One-for-All" -type, biodegradable prussian blue/manganese dioxide hybrid nanocrystal for trimodal imaging-guided photothermal therapy and oxygen regulation of breast cancer. ACS Appl Mater Interfaces 2017; 9:13875
|
[54] |
Fu J, Wu B, Wei M, Huang Y, Zhou Y, Zhang Q, et al. Prussian blue nanosphere-embeddedin situhydrogel for photothermal therapy byperitumoral administration. Acta Pharm Sin B 2019; 9:604-614
|
[55] |
Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment:recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018; 156:217-237
|
[56] |
Parodi A, Quattrocchi N, Van de Ven A, Chiappini C, Evangelopoulos M, Martinez J, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8:61-68
|
[57] |
Liu Y, Wang Z, Liu Y, Zhu G, Jacobson O, Fu X, et al. Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors. ACS Nano 2017; 11:10539-10548
|
[58] |
Garcia K, Zarschler K, Barbaro L, Barreto J, Malley WO, Spiccia L, et al. Zwitterionic-coated "stealth" nanoparticles for biomedical applications:recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014; 10:2516-2529
|
[59] |
Danhier F, Le Breton A, Preat V. RGD-based strategies to target alpha(v)beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 2012; 9:2961-2973
|
[60] |
Xing F, Zhou C, Hui D, Du C, Wu L, Wang L, et al. Hyaluronic acid as a bioactive component for bone tissue regeneration:fabrication, modification, properties, and biological functions. Nanotechnol Rev 2020; 9:1059-1079
|
[61] |
Ungelenk S, Moayed F, Ho CT, Grousl T, Scharf A, Mashaghi A, et al. Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat Commun 2016; 7:13673-13687
|
[62] |
An Z, Tang W, Wu M, Jiao Z, Stucky GD. Hetero functional polymers and core-shell nanoparticles cascade aminolysis/michael addition and alkyne-azide click reaction of RAFT polymers. Chem Commun 2008; 48:6501-6503
|
[63] |
Liu T, Liu S. Responsive polymers-based dual fluorescent chemosensors for Zn2+ ions and temperatures working in purely aqueous media. Anal Chem 2011; 83:2775-2785
|
[64] |
Lai JT, Filla D, Shea R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002; 35:6754-6756
|
[65] |
Li Z, Hu Y, Jiang T, Howard KA, Li Y, Fan X, et al. Human-serum-albumin-coated prussian blue nanoparticles as pH-/thermotriggered drug-delivery vehicles for cancer thermochemotherapy. Part Part Syst Charact 2016; 33:53-62
|
[66] |
Koppolu B, Zaharoff DA. The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials 2013; 34:2359-2369
|
[67] |
Getts D, Martin A, McCarthy D, Terry R, Hunter Z, Yap W, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 2012; 30:1217-1224
|
[68] |
Yu G, Yang Z, Fu X, Yung BC, Yang J, Mao Z, et al. Polyrotaxane-based supramolecular theranostics. Nat Commun 2018; 9:766
|
[69] |
Yang K, Liu Y, Zhang Q, Kong C, Yi C, Zhou Z, et al. Cooperative assembly of magneto-nanovesicles with tunable wall thickness and permeability for MRI-guided drug delivery. J Am Chem Soc 2018; 140:4666-4677
|
[70] |
Hsiang YH, Hertzberg R, Hecht S, Liu L. Camptothecin induces protein-linked DNA breaks mammalian DNA topoisomerase I. J Biol Chem 1985; 260:14873-14878
|
[71] |
Zimmer A, Amar-Farkash S, Danon T, Alon U. Dynamic proteomics reveals bimodal protein dynamics of cancer cells in response to HSP90 inhibitor. BMC Syst Biol 2017; 11:33
|
[72] |
Rowe TC, Couto E, Kroll DJ. Camptothecin inhibits HSP70 heat-shock transcription and induces DNA strand breaks in HSP70 genes in Drosophila. NCI Monogr. 1987; 4:49-53
|
[73] |
Paduch R, Jakubowicz-Gil J, Niedziela P. Hepatocyte growth factor (HGF), heat shock proteins (HSPs) and multidrug resistance protein (MRP) expression in co-culture of colon tumor spheroids with normal cells after incubation with interleukin-1beta (IL-1beta) and/or camptothecin (CPT-11). Indian J Exp Biol 2010; 48:354-364
|
[74] |
Liu S, Yuan Y, Okumura Y, Shinkai N, Yamauchi H. Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth. Biochem Bioph Res Co 2010; 394:297-302
|
[75] |
Elmallah M, Gordonnier M, Vautrot V, Chanteloup G, Garrido C, Gobbo J. Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Let 2020; 469:134-141
|
[76] |
Yue X, Zhang Q, Dai Z. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv Drug Delivery Rev 2017; 115:155-170
|
[77] |
Zhang L, Zhang Y, Xue Y, Wu Y, Wang Q, Xue L, et al. Transforming weakness into strength:photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv Mater 2019; 31:1805936
|
[78] |
Han R, Xiao Y, Yang Q, Pan M, Hao Y, He X, et al. Ag2S nanoparticle-mediated multiple ablations reinvigorates the immune response for enhanced cancer photo-immunotherapy. Biomaterials 2012; 264:120451
|