[1] |
Ribas, A. Adaptive immune resistance:how cancer protects from immune attack. Cancer Discov 2015; 5:915-919
|
[2] |
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168:707-723
|
[3] |
Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 2020; 20:25-39
|
[4] |
Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med 2004; 10:15-18
|
[5] |
Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med 2013; 5:200ra116
|
[6] |
Cervenka I, Agudelo LZ, Ruas JL. Kynurenines:tryptophan's metabolites in exercise, inflammation, and mental health. Science 2017; 357:eaaf9794
|
[7] |
Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, et al. Interferon-γ drives T(reg) fragility to promote anti-tumor immunity. Cell 2017; 169:1130-1141.e11
|
[8] |
Mellor AL, Munn DH. Tryptophan catabolism and regulation of adaptive immunity. J Immunol 2003; 170:5809-5813
|
[9] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12:252-264
|
[10] |
Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 2016; 16:121-126
|
[11] |
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity 2020; 52:17-35
|
[12] |
O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019; 16:151-167
|
[13] |
Riethmuller G. Symmetry breaking:bispecific antibodies, the beginnings, and 50 years on. Cancer Immun 2012; 12:12
|
[14] |
Sheridan C. Bispecific antibodies poised to deliver wave of cancer therapies. Nat Biotechnol 2021; 39:251-254
|
[15] |
Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 2010; 10:301-316
|
[16] |
Labrijn AF, Janmaat ML, Reichert JM, Parren P. Bispecific antibodies:a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608
|
[17] |
Weidanz J. Targeting cancer with bispecific antibodies. Science; 371:996-997
|
[18] |
Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu Z, Yu H. From design to clinic:engineered nanobiomaterials for immune normalization therapy of cancer. Adv Mater 2021; 33:2008094
|
[19] |
Chan WCW. Nanomedicine 2.0. Acc Chem Res 2017; 50:627-632
|
[20] |
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine:progress, challenges and opportunities. Nat Rev Cancer 2017; 17:20-37
|
[21] |
Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine:from targeted delivery to combination therapy. Trends Mol Med 2015; 21:223-232
|
[22] |
Yang B, Gao J, Pei Q, Xu H, Yu H. Engineering prodrug nanomedicine for cancer immunotherapy. Adv Sci 2020; 7:2002365
|
[23] |
Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, et al. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021; 11:886-902
|
[24] |
Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, et al. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv Sci 2018; 5:1700891.1701115
|
[25] |
Yang Q, Shi G, Chen X, Lin Y, Cheng L, Jiang Q, et al. Nanomicelle protects the immune activation effects of paclitaxel and sensitizes tumors to anti-PD-1 immunotherapy. Theranostics 2020; 10:8382-8399
|
[26] |
Li M, Zhao L, Zhang T, Shu Y, He Z, Ma Y, et al. Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers. Acta Pharm Sin B 2019; 9:421-432
|
[27] |
Yu J, Wang Y, Zhou S, Li J, Wang J, Chi D, et al. Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm Sin B 2020; 10:1730-1740
|
[28] |
Zhou S, Li J, Yu J, Yang L, Kuang X, Wang Z, et al. A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect. Acta Pharm Sin B 2021; 11:258-270
|
[29] |
Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 2006; 6:535-545
|
[30] |
Aune TM, Pogue SL. Inhibition of tumor cell growth by interferon-gamma is mediated by two distinct mechanisms dependent upon oxygen tension:induction of tryptophan degradation and depletion of intracellular nicotinamide adenine dinucleotide. J Clin Invest 1989; 84:863-875
|
[31] |
Sheridan C. IDO inhibitors move center stage in immuno-oncology. Nat Biotechnol 2015; 33:321-322
|
[32] |
Filippakopoulos P, Knapp S. Targeting bromodomains:epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014; 13:337-356
|
[33] |
Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG, Allegrezza MJ, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 2016; 16:2829-2837
|
[34] |
Hou B, Zhou L, Wang H, Saeed M, Wang D, Xu Z, et al. Engineering stimuli-activatable boolean logic prodrug nanoparticles for combination cancer immunotherapy. Adv Mater 2020; 32:1907210.1907211
|
[35] |
Wang T, Wang D, Liu J, Feng B, Zhou F, Zhang H, et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett 2017; 17:5429-5436
|
[36] |
Ma Y, Mou Q, Zhu X, Yan D. Small molecule nanodrugs for cancer therapy. Mater Today Chem 2017; 4:26-39
|
[37] |
Wang Y, Liu D, Zheng Q, Zhao Q, Zhang H, Ma Y, et al. Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett 2014; 14:5577-5583
|
[38] |
Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. J Control Release 2012; 164:156-169
|
[39] |
Zhu Q, Saeed M, Song R, Sun T, Jiang C, Yu H. Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chin Chem Lett 2020; 31:1051-1059
|
[40] |
Gao J, Wang WQ, Yu HJ. Acid-activatable polymeric drug delivery systems for cancer therapy. Acta Polym Sin 2010; 41:986-994
|
[41] |
Gao A, Chen B, Gao J, Zhou F, Saeed M, Hou B, et al. Sheddable prodrug vesicles combating adaptive immune resistance for improved photodynamic immunotherapy of cancer. Nano Lett 2020; 20:353-362
|
[42] |
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13:54-61
|
[43] |
Du L, Xing Z, Tao B, Li T, Yang D, Li W, et al. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway. Signal Transduct Target Ther 2020; 5:10
|
[44] |
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B 2021. Available from:DOI: 10.1016/j.apsb.2021.03.033
|
[45] |
Cheng X, Li D, Xu J, Wei B, Fang Q, Yang L, et al. Self-assembled ternary hybrid nanodrugs for overcoming tumor resistance and metastasis. Acta Pharm Sin B 2021. Available from:DOI: 10.1016/j.apsb.2021.03.041
|