[1] |
Pritchard-Jones K, Kaatsch P, Steliarova-Foucher E, Stiller C, Coebergh J. Cancer in children and adolescents in Europe:developments over 20 years and future challenges. Eur J Cancer 2006;42:2183-2190
|
[2] |
Broaddus E, Topham A, Singh AD. Incidence of retinoblastoma in the USA:1975-2004. Br J Ophthalmol 2009;93:21-23
|
[3] |
Fabian ID, Onadim Z, Karaa E, Duncan C, Chowdhury T, Scheimberg I, et al. The management of retinoblastoma. Oncogene 2018;37:1551-1560
|
[4] |
Munier FL, Beck-Popovic M, Chantada GL, Cobrinik D, Kivela TT, Lohmann D, et al. Conservative management of retinoblastoma:challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity". Prog Retin Eye Res 2019;73:100764
|
[5] |
Maccarthy A, Birch JM, Draper GJ, Hungerford JL, Kingston JE, Kroll ME, et al. Retinoblastoma:treatment and survival in great britain 1963 to 2002. Br J Ophthalmol 2009;93:38-39
|
[6] |
Shields CL, Manjandavida FP, Lally SE, Pieretti G, Arepalli SA, Caywood EH, et al. Intra-arterial chemotherapy for retinoblastoma in 70 eyes:outcomes based on the international classification of retinoblastoma. Ophthalmology 2014;121:1453-1460
|
[7] |
Dalvin LA, Ancona-Lezama D, Lucio-Alvarez JA, Masoomian B, Jabbour P, Shields CL. Ophthalmic vascular events after primary unilateral intra-arterial chemotherapy for retinoblastoma in early and recent eras. Ophthalmology 2018;125:1803-1811
|
[8] |
Francis JH, Iyer S, Gobin YP, Brodie SE, Abramson DH. Retinoblastoma vitreous seed clouds (class 3):a comparison of treatment with ophthalmic artery chemosurgery with or without intravitreous and periocular chemotherapy. Ophthalmology 2017;124:1548-1555
|
[9] |
Bianciotto C, Shields CL, Iturralde JC, Sarici A, Jabbour P, Shields JA. Fluorescein angiographic findings after intra-arterial chemotherapy for retinoblastoma. Ophthalmology 2012;119:843-849
|
[10] |
Ravindran K, Dalvin LA, Pulido JS, Brinjikji W. Intra-arterial chemotherapy for retinoblastoma:an updated systematic review and meta-analysis. J Neurointerventional Surg 2019; 11:1266-1272
|
[11] |
Aronow ME. Intra-arterial chemotherapy for retinoblastoma:experience matters but risks remain. Ophthalmology 2018;125:1812
|
[12] |
Chen Y, Hao Y, Huang Y, Wu W, Liu X, Li Y, et al. An injectable, near-infrared light-responsive click cross-linked azobenzene hydrogel for breast cancer chemotherapy. J Biomed Nanotechnol 2019;15:1923-1936
|
[13] |
Xu Y, Hao Y, Li W, Xiao Y, Zhou T, Hu D, et al. Near-infrared responsive doxorubicin loaded hollow mesoporous prussian blue nanoparticles combined with dissolvable hyaluronic acid microneedle system for human oral squamous cell carcinoma therapy. J Biomed Nanotechnol 2020;16:721-738
|
[14] |
Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl Mater Interfaces 2017;9:5683-5691
|
[15] |
Hao Y, Chen Y, He X, Yang F, Han R, Yang C, et al. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact Mater 2020;5:542-552
|
[16] |
Wu H, Wang C, Sun J, Sun L, Wan J, Wang S, et al. Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis. ACS Appl Mater Interfaces 2019;11:43996-44006
|
[17] |
Yang K, Liu Y, Wang Y, Ren Q, Guo H, Matson JB, et al. Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials 2019;223:119460
|
[18] |
Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett 2019;19:6635-6646
|
[19] |
Zhong D, Zhao J, Li Y, Qiao Y, Wei Q, He J, et al. Laser-triggered aggregated cubic α-Fe2O3@Au nanocomposites for magnetic resonance imaging and photothermal/enhanced radiation synergistic therapy. Biomaterials 2019;219:119369
|
[20] |
Lee C, Kwon W, Beack S, Lee D, Park Y, Kim H, et al. Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy. Theranostics 2016;6:2196
|
[21] |
Zhang B, Yu Q, Zhang YM, Liu Y. Two-dimensional supramolecular assemblies based on β-cyclodextrin-grafted graphene oxide for mitochondrial dysfunction and photothermal therapy. Chem Commun 2019;55:12200-12203
|
[22] |
Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials:synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019;271:101991
|
[23] |
Hsueh YH, Hsieh CT, Chiu ST, Tsai PH, Liu CY, Ke WJ. Antibacterial property of composites of reduced graphene oxide with nano-silver and zinc oxide nanoparticles synthesized using a microwave-assisted approach. Int J Mol Sci 2019;20:5394
|
[24] |
Bo Q, Yan Q, Shen M, Song M, Sun M, Yu Y, et al. Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography. JAMA Ophthalmol 2019;137:642-650
|
[25] |
Itakura S, Masui K, Kazama T. Rapid infusion of hydroxyethyl starch 70/0.5 but not acetate Ringer's solution decreases the plasma concentration of propofol during target-controlled infusion. Anesthesiology 2016;125:304-312
|
[26] |
Yan F, Wu H, Liu H, Deng Z, Liu H, Duan W, et al. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Contr Release 2016;224:217-228
|
[27] |
Wang Y, Xie D, Pan J, Xia C, Fan L, Pu Y, et al. A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer. Biomater Sci 2019;7:5270-5282
|
[28] |
Wang R, Zhang C, Li J, Huang J, Opoku-Damoah Y, Sun B, et al. Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics. Biomaterials 2019;221:119413
|
[29] |
Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 2013;34:7706-7714
|
[30] |
Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, et al. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 2015;37:415-424
|
[31] |
Zhao P, Zheng M, Yue C, Luo Z, Gong P, Gao G, et al. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials 2014;35:6037-6046
|
[32] |
Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 2015;39:105-113
|
[33] |
Li W, Xue B, Shi K, Qu Y, Chu B, Qian Z. Magnetic iron oxide nanoparticles/10-hydroxy camptothecin co-loaded nanogel for enhanced photothermal-chemo therapy. Appl Mater Today 2019;14:84-95
|
[34] |
Qu Y, Chu B, Wei X, Lei M, Hu D, Zha R, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Contr Release 2019;296:93-106
|
[35] |
Chen S, Hao X, Liang X, Zhang Q, Zhang C, Zhou G, et al. Inorganic nanomaterials as carriers for drug delivery. J Biomed Nanotechnol 2016;12:1-27
|
[36] |
Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, et al. Physical-, chemical-, and biological-responsive nanomedicine for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1581
|
[37] |
Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian Z. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020;41:911-927
|
[38] |
Qu Y, Chu BY, Shi K, Peng J, Qian Z. Recent progress in functional micellar carriers with intrinsic therapeutic activities for anticancer drug delivery. J Biomed Nanotechnol 2017;13:1598-1618
|
[39] |
Wu L, Fang S, Shi S, Deng J, Liu B, Cai L. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 2013; 14:3027-3033
|
[40] |
Han YH, Kankala RK, Wang SB, Chen AZ. Leveraging engineering of indocyanine green-encapsulated polymeric nanocomposites for biomedical applications. Nanomaterials 2018;8:360
|
[41] |
Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010;328:1031-1035
|
[42] |
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted delivery to tumors:multidirectional strategies to improve treatment efficiency. Cancers 2019;11:68
|
[43] |
Li Y, Liu G, Ma J, Lin J, Lin H, Su G, et al. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Contr Release 2017;258:95-107
|