留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma

Ying Liu Yu Han Shizhu Chen Jingjie Liu Dajiang Wang Yifei Huang

Ying Liu, Yu Han, Shizhu Chen, Jingjie Liu, Dajiang Wang, Yifei Huang. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma[J]. 机械工程学报. doi: 10.1016/j.apsb.2021.10.009
引用本文: Ying Liu, Yu Han, Shizhu Chen, Jingjie Liu, Dajiang Wang, Yifei Huang. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma[J]. 机械工程学报. doi: 10.1016/j.apsb.2021.10.009
Ying Liu, Yu Han, Shizhu Chen, Jingjie Liu, Dajiang Wang, Yifei Huang. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2021.10.009
Citation: Ying Liu, Yu Han, Shizhu Chen, Jingjie Liu, Dajiang Wang, Yifei Huang. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2021.10.009

Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma

doi: 10.1016/j.apsb.2021.10.009
基金项目: 

This research was financially supported by National Natural Science Foundation of China (7212092, 81770887), China Postdoctoral Science Foundation (2019M650558), Beijing Postdoctoral Research Foundation and Beijing Chaoyang District Postdoctoral Research Foundation.

详细信息
    通讯作者:

    Dajiang Wang,E-mail:glaucomawang@163.com

    Yifei Huang,E-mail:yfhuang301@163.com

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383521004019/pdf?md5=7090ecb111f0cf6b0a6671b1b7500b63&pid=1-s2.0-S2211383521004019-main.pdf

Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma

Funds: 

This research was financially supported by National Natural Science Foundation of China (7212092, 81770887), China Postdoctoral Science Foundation (2019M650558), Beijing Postdoctoral Research Foundation and Beijing Chaoyang District Postdoctoral Research Foundation.

  • 摘要: Photothermal therapy has the characteristics of minimal invasiveness, controllability, high efficiency, and strong specificity, which can effectively make up for the toxic side effects and tumor resistance caused by traditional drug treatment. However, due to the limited tissue penetration of infrared light, it is difficult to promote and apply in clinical practice. The eye is the only transparent tissue in human, and infrared light can easily penetrate the eye tissue, so it is expected that photothermal therapy can be used to treat fundus diseases. Here in, a new nano-platform assembled by liposome and indocyanine green (ICG) was used to treat retinoblastoma. ICG was assembled in liposomes to overcome some problems of ICG itself. For example, ICG is easily quenched, self-aggregating and instability. Moreover, liposomes can prevent free ICG from being cleared through the systemic circulation. The construction of the nano-platform not only ensured the stability of ICG in vivo, but also realized imaging-guide photothermal therapy, which created a new strategy for the treatment of retinoblastoma.

     

  • [1] Pritchard-Jones K, Kaatsch P, Steliarova-Foucher E, Stiller C, Coebergh J. Cancer in children and adolescents in Europe:developments over 20 years and future challenges. Eur J Cancer 2006;42:2183-2190
    [2] Broaddus E, Topham A, Singh AD. Incidence of retinoblastoma in the USA:1975-2004. Br J Ophthalmol 2009;93:21-23
    [3] Fabian ID, Onadim Z, Karaa E, Duncan C, Chowdhury T, Scheimberg I, et al. The management of retinoblastoma. Oncogene 2018;37:1551-1560
    [4] Munier FL, Beck-Popovic M, Chantada GL, Cobrinik D, Kivela TT, Lohmann D, et al. Conservative management of retinoblastoma:challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity". Prog Retin Eye Res 2019;73:100764
    [5] Maccarthy A, Birch JM, Draper GJ, Hungerford JL, Kingston JE, Kroll ME, et al. Retinoblastoma:treatment and survival in great britain 1963 to 2002. Br J Ophthalmol 2009;93:38-39
    [6] Shields CL, Manjandavida FP, Lally SE, Pieretti G, Arepalli SA, Caywood EH, et al. Intra-arterial chemotherapy for retinoblastoma in 70 eyes:outcomes based on the international classification of retinoblastoma. Ophthalmology 2014;121:1453-1460
    [7] Dalvin LA, Ancona-Lezama D, Lucio-Alvarez JA, Masoomian B, Jabbour P, Shields CL. Ophthalmic vascular events after primary unilateral intra-arterial chemotherapy for retinoblastoma in early and recent eras. Ophthalmology 2018;125:1803-1811
    [8] Francis JH, Iyer S, Gobin YP, Brodie SE, Abramson DH. Retinoblastoma vitreous seed clouds (class 3):a comparison of treatment with ophthalmic artery chemosurgery with or without intravitreous and periocular chemotherapy. Ophthalmology 2017;124:1548-1555
    [9] Bianciotto C, Shields CL, Iturralde JC, Sarici A, Jabbour P, Shields JA. Fluorescein angiographic findings after intra-arterial chemotherapy for retinoblastoma. Ophthalmology 2012;119:843-849
    [10] Ravindran K, Dalvin LA, Pulido JS, Brinjikji W. Intra-arterial chemotherapy for retinoblastoma:an updated systematic review and meta-analysis. J Neurointerventional Surg 2019; 11:1266-1272
    [11] Aronow ME. Intra-arterial chemotherapy for retinoblastoma:experience matters but risks remain. Ophthalmology 2018;125:1812
    [12] Chen Y, Hao Y, Huang Y, Wu W, Liu X, Li Y, et al. An injectable, near-infrared light-responsive click cross-linked azobenzene hydrogel for breast cancer chemotherapy. J Biomed Nanotechnol 2019;15:1923-1936
    [13] Xu Y, Hao Y, Li W, Xiao Y, Zhou T, Hu D, et al. Near-infrared responsive doxorubicin loaded hollow mesoporous prussian blue nanoparticles combined with dissolvable hyaluronic acid microneedle system for human oral squamous cell carcinoma therapy. J Biomed Nanotechnol 2020;16:721-738
    [14] Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl Mater Interfaces 2017;9:5683-5691
    [15] Hao Y, Chen Y, He X, Yang F, Han R, Yang C, et al. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact Mater 2020;5:542-552
    [16] Wu H, Wang C, Sun J, Sun L, Wan J, Wang S, et al. Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis. ACS Appl Mater Interfaces 2019;11:43996-44006
    [17] Yang K, Liu Y, Wang Y, Ren Q, Guo H, Matson JB, et al. Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials 2019;223:119460
    [18] Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett 2019;19:6635-6646
    [19] Zhong D, Zhao J, Li Y, Qiao Y, Wei Q, He J, et al. Laser-triggered aggregated cubic α-Fe2O3@Au nanocomposites for magnetic resonance imaging and photothermal/enhanced radiation synergistic therapy. Biomaterials 2019;219:119369
    [20] Lee C, Kwon W, Beack S, Lee D, Park Y, Kim H, et al. Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy. Theranostics 2016;6:2196
    [21] Zhang B, Yu Q, Zhang YM, Liu Y. Two-dimensional supramolecular assemblies based on β-cyclodextrin-grafted graphene oxide for mitochondrial dysfunction and photothermal therapy. Chem Commun 2019;55:12200-12203
    [22] Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials:synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019;271:101991
    [23] Hsueh YH, Hsieh CT, Chiu ST, Tsai PH, Liu CY, Ke WJ. Antibacterial property of composites of reduced graphene oxide with nano-silver and zinc oxide nanoparticles synthesized using a microwave-assisted approach. Int J Mol Sci 2019;20:5394
    [24] Bo Q, Yan Q, Shen M, Song M, Sun M, Yu Y, et al. Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography. JAMA Ophthalmol 2019;137:642-650
    [25] Itakura S, Masui K, Kazama T. Rapid infusion of hydroxyethyl starch 70/0.5 but not acetate Ringer's solution decreases the plasma concentration of propofol during target-controlled infusion. Anesthesiology 2016;125:304-312
    [26] Yan F, Wu H, Liu H, Deng Z, Liu H, Duan W, et al. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Contr Release 2016;224:217-228
    [27] Wang Y, Xie D, Pan J, Xia C, Fan L, Pu Y, et al. A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer. Biomater Sci 2019;7:5270-5282
    [28] Wang R, Zhang C, Li J, Huang J, Opoku-Damoah Y, Sun B, et al. Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics. Biomaterials 2019;221:119413
    [29] Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 2013;34:7706-7714
    [30] Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, et al. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 2015;37:415-424
    [31] Zhao P, Zheng M, Yue C, Luo Z, Gong P, Gao G, et al. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials 2014;35:6037-6046
    [32] Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 2015;39:105-113
    [33] Li W, Xue B, Shi K, Qu Y, Chu B, Qian Z. Magnetic iron oxide nanoparticles/10-hydroxy camptothecin co-loaded nanogel for enhanced photothermal-chemo therapy. Appl Mater Today 2019;14:84-95
    [34] Qu Y, Chu B, Wei X, Lei M, Hu D, Zha R, et al. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Contr Release 2019;296:93-106
    [35] Chen S, Hao X, Liang X, Zhang Q, Zhang C, Zhou G, et al. Inorganic nanomaterials as carriers for drug delivery. J Biomed Nanotechnol 2016;12:1-27
    [36] Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, et al. Physical-, chemical-, and biological-responsive nanomedicine for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1581
    [37] Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian Z. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020;41:911-927
    [38] Qu Y, Chu BY, Shi K, Peng J, Qian Z. Recent progress in functional micellar carriers with intrinsic therapeutic activities for anticancer drug delivery. J Biomed Nanotechnol 2017;13:1598-1618
    [39] Wu L, Fang S, Shi S, Deng J, Liu B, Cai L. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 2013; 14:3027-3033
    [40] Han YH, Kankala RK, Wang SB, Chen AZ. Leveraging engineering of indocyanine green-encapsulated polymeric nanocomposites for biomedical applications. Nanomaterials 2018;8:360
    [41] Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010;328:1031-1035
    [42] Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted delivery to tumors:multidirectional strategies to improve treatment efficiency. Cancers 2019;11:68
    [43] Li Y, Liu G, Ma J, Lin J, Lin H, Su G, et al. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Contr Release 2017;258:95-107
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  28
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-10-06
  • 录用日期:  2021-10-08
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回