留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization

Tingting Yang Yuzhu Hu Junming Miao Jing Chen Jiagang Liu Yongzhong Cheng Xiang Gao

Tingting Yang, Yuzhu Hu, Junming Miao, Jing Chen, Jiagang Liu, Yongzhong Cheng, Xiang Gao. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.02.009
引用本文: Tingting Yang, Yuzhu Hu, Junming Miao, Jing Chen, Jiagang Liu, Yongzhong Cheng, Xiang Gao. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.02.009
Tingting Yang, Yuzhu Hu, Junming Miao, Jing Chen, Jiagang Liu, Yongzhong Cheng, Xiang Gao. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.02.009
Citation: Tingting Yang, Yuzhu Hu, Junming Miao, Jing Chen, Jiagang Liu, Yongzhong Cheng, Xiang Gao. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.02.009

A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization

doi: 10.1016/j.apsb.2022.02.009
基金项目: 

This work was supported by the National Natural Science Foundation of China (No. 82172630, 81972347 and 82003493), the Key R&

D Projects of the Science and Technology Department of Sichuan Province (No. 2020YFS0213, China) and the 1·

5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (No. ZYJC21022, No. ZYYC21001 and 2019HXFH017, China).

详细信息
    通讯作者:

    Xiang Gao,E-mail:xianggao@scu.edu.cn

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383522000594/pdf?md5=1c724b19bb49ae70a1c6c19e6e96bacb&pid=1-s2.0-S2211383522000594-main.pdf

A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization

Funds: 

This work was supported by the National Natural Science Foundation of China (No. 82172630, 81972347 and 82003493), the Key R&

D Projects of the Science and Technology Department of Sichuan Province (No. 2020YFS0213, China) and the 1·

5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (No. ZYJC21022, No. ZYYC21001 and 2019HXFH017, China).

  • 摘要: Glioma is a primary aggressive brain tumor with high recurrence rate. The poor efficiency of chemotherapeutic drugs crossing the blood-brain barrier (BBB) is well-known as one of the main challenges for anti-glioma therapy. Moreover, massive infiltrated tumor-associated macrophages (TAMs) in glioma further thwart the drug efficacy. Herein, a therapeutic nanosystem (SPP-ARV-825) is constructed by incorporating the BRD4-degrading proteolytic targeting chimera (PROTAC) ARV-825 into the complex micelle (SPP) composed of substance P (SP) peptide-modified poly(ethylene glycol)-poly(d,l-lactic acid)(SP-PEG-PDLLA) and methoxy poly(ethylene glycol)-poly(d,l-lactic acid) (mPEG-PDLLA, PP), which could penetrate BBB and target brain tumor. Subsequently, released drug engenders antitumor effect via attenuating cells proliferation, inducing cells apoptosis and suppressing M2 macrophages polarization through the inhibition of IRF4 promoter transcription and phosphorylation of STAT6, STAT3 and AKT. Taken together, our work demonstrates the versatile role and therapeutic efficacy of SPP-ARV-825 micelle against glioma, which may provide a novel strategy for glioma therapy in future.

     

  • [1] Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report:primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol 2020; 22 (12 Suppl 2):iv1-96
    [2] Tan AC, Ashley DM, Lopez GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma:state of the art and future directions. CA Cancer J Clin 2020; 70:299-312
    [3] Bell EH, Zhang P, Shaw EG, Buckner JC, Barger GR, Bullard DE, et al. Comprehensive genomic analysis in NRG oncology/RTOG 9802:a phase III trial of radiation versus radiation plus procarbazine, lomustine (CCNU), and vincristine in high-risk low-grade glioma. J Clin Oncol 2020; 38:3407-3417
    [4] Quinn JA, Pluda J, Dolan ME, Delaney S, Kaplan R, Rich JN, et al. Phase II trial of carmustine plus O6-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol 2002; 20:2277-2283
    [5] Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci 2014; 15:455-465
    [6] Alifieris C, Trafalis DT. Glioblastoma multiforme:pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82
    [7] van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19:1-12
    [8] Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11:2306-2325
    [9] Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. Cancer Cell 2019; 35:868-884.e6
    [10] Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 2016; 19:20-27
    [11] Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 2021; 184:2454-2470.e26
    [12] Liu L, Cui J, Zhao Y, Liu X, Chen L, Xia Y, et al. KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1. Mol Cancer 2021; 20:77
    [13] Kohnken R, Wen J, Mundy-Bosse B, McConnell K, Keiter A, Grinshpun L, et al. Diminished microRNA-29b level is associated with BRD4-mediated activation of oncogenes in cutaneous T-cell lymphoma. Blood 2018; 131:771-781
    [14] Lu L, Chen Z, Lin X, Tian L, Su Q, An P, et al. Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ 2020; 27:255-268
    [15] Echevarria-Vargas IM, Reyes-Uribe PI, Guterres AN, Yin X, Kossenkov AV, Liu Q, et al. Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 2018; 10:e8446
    [16] Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer:going beyond transcriptional regulation. Mol Cancer 2018; 17:164
    [17] Cheung KL, Zhang F, Jaganathan A, Sharma R, Zhang Q, Konuma T, et al. Distinct roles of Brd2 and Brd4 in potentiating the transcriptional program for Th17 cell differentiation. Mol Cell 2017; 65:1068-1080.e5
    [18] Dong X, Hu X, Bao Y, Li G, Yang XD, Slauch JM, et al. Brd4 regulates NLRC4 inflammasome activation by facilitating IRF8-mediated transcription of Naips. J Cell Biol 2021; 220:e202005148
    [19] Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23
    [20] Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, Leleu X, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma:a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol 2016; 3:e196-204
    [21] Shu S, Wu HJ, Ge JY, Zeid R, Harris IS, Jovanovic B, et al. Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer. Mol Cell 2020; 78:1096-1113.e8
    [22] Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019; 25:1938-1947
    [23] Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 2020; 181:102-114
    [24] Wang Y, Jiang XY, Feng F, Liu WY, Sun HP. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10:207-238
    [25] Saenz DT, Fiskus W, Qian Y, Manshouri T, Rajapakshe K, Raina K, et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia 2017; 31:1951-1961
    [26] Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 2015; 22:755-763
    [27] Piya S, Mu H, Bhattacharya S, Lorenzi PL, Davis RE, McQueen T, et al. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment. J Clin Invest 2019; 129:1878-1894
    [28] Zhang XH, Lee HC, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I, et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 2018; 32:2224-2239
    [29] Saenz DT, Fiskus W, Manshouri T, Mill CP, Qian YM, Raina K, et al. Targeting nuclear beta-catenin as therapy for post-myeloproliferative neoplasm secondary AML. Leukemia 2019; 33:1373-1386
    [30] Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, et al. BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia 2018; 32:343-352
    [31] Jain N, Hartert K, Tadros S, Fiskus W, Havranek O, Ma MCJ, et al. Targetable genetic alterations of TCF4 (E2-2) drive immunoglobulin expression in diffuse large B cell lymphoma. Sci Transl Med 2019; 11
    [32] Raina K, Lu J, Qian YM, Altieri M, Gordon D, Rossi AMK, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016; 113:7124-7129
    [33] Tan J, Duan X, Zhang F, Ban X, Mao J, Cao M, et al. Theranostic nanomedicine for synergistic chemodynamic therapy and chemotherapy of orthotopic glioma. Adv Sci (Weinh) 2020; 7:2003036
    [34] Di Mascolo D, Palange AL, Primavera R, Macchi F, Catelani T, Piccardi F, et al. Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nat Nanotechnol 2021; 16:820-829
    [35] Ju X, Miao T, Chen H, Ni J, Han L. Overcoming Mfsd2a-mediated low transcytosis to boost nanoparticle delivery to brain for chemotherapy of brain metastases. Adv Healthc Mater 2021; 10:e2001997-n/a
    [36] Khan N, Ni J, Ju XF, Miao TT, Chen HY, Han L. Escape from abluminal LRP1-mediated clearance for boosted nanoparticle brain delivery and brain metastasis treatment. Acta Pharm Sin B 2021; 11:1341-1354
    [37] Wang Z, Guo J, Liu X, Sun J, Gao W. Temperature-triggered micellization of interferon alpha-diblock copolypeptide conjugate with enhanced stability and pharmacology. J Control Release 2020; 328:444-453
    [38] Xu F, Huang X, Wang Y, Zhou S. A size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv Mater 2020; 32:e1906745
    [39] Gupta MK, Martin JR, Dollinger BR, Hattaway ME, Duvall CL. Thermogelling, ABC triblock copolymer platform for resorbable hydrogels with tunable, degradation-mediated drug release. Adv Funct Mater 2017; 27:1704107
    [40] Wang L, Huang X, You X, Yi T, Lu B, Liu J, et al. Nanoparticle enhanced combination therapy for stem-like progenitors defined by single-cell transcriptomics in chemotherapy-resistant osteosarcoma. Signal Transduct Target Ther 2020; 5:196
    [41] Chen Y, Zhang M, Jin H, Li D, Xu F, Wu A, et al. Glioma dual-targeting nanohybrid protein toxin constructed by intein-mediated site-specific ligation for multistage booster delivery. Theranostics 2017; 7:3489-3503
    [42] Huang CW, Chuang CP, Chen YJ, Wang HY, Lin JJ, Huang CY, et al. Integrin αβ-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J Nanobiotechnology 2021; 19:180
    [43] Krolicki L, Bruchertseifer F, Kunikowska J, Koziara H, Krolicki B, Jakucinski M, et al. Safety and efficacy of targeted alpha therapy with Bi-DOTA-substance P in recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2019; 46:614-622
    [44] Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK, Hale JS, et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer cell 2015; 28:441-455
    [45] Ruan C, Liu L, Lu Y, Zhang Y, He X, Chen X, et al. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm Sin B 2018; 8:85-96
    [46] Tao Z, Li X, Wang H, Chen G, Feng Z, Wu Y, et al. BRD4 regulates self-renewal ability and tumorigenicity of glioma-initiating cells by enrichment in the Notch1 promoter region. Clin Transl Med 2020; 10:e181
    [47] Minko T. Nanoformulation of BRD4-degrading PROTAC:improving druggability to target the ‘undruggable’ MYC in pancreatic cancer. Trends Pharmacol Sci 2020; 41:684-686
    [48] Noblejas-Lopez MDM, Nieto-Jimenez C, Burgos M, Gomez-Juarez M, Montero JC, Esparis-Ogando A, et al. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J Exp Clin Cancer Res 2019; 38:383
    [49] Wong PP, Munoz-Felix JM, Hijazi M, Kim H, Robinson SD, De Luxan-Delgado B, et al. Cancer burden is controlled by mural cell-β3-integrin regulated crosstalk with tumor cells. Cell 2020; 181
    [50] Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20:74-88
    [51] Zong D, Gu J, Cavalcante GC, Yao W, Zhang G, Wang S, et al. BRD4 levels determine the response of human lung cancer cells to BET degraders that potently induce apoptosis through suppression of Mcl-1. Cancer Res 2020; 80:2380-2393
    [52] Shi C, Ye Z, Han J, Ye X, Lu W, Ji C, et al. BRD4 as a therapeutic target for nonfunctioning and growth hormone pituitary adenoma. Neuro Oncol 2020; 22:1114-1125
    [53] Schmieder A, Michel J, Schonhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 2012; 22:289-297
    [54] Dey A, Yang W, Gegonne A, Nishiyama A, Pan R, Yagi R, et al. BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J 2019; 38:e100293
    [55] Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG, Allegrezza MJ, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 2016; 16:2829-2837
    [56] Yin M, Guo Y, Hu R, Cai WL, Li Y, Pei S, et al. Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nat Commun 2020; 11:1833
    [57] Schmidt SV, Krebs W, Ulas T, Xue J, Bassler K, Gunther P, et al. The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin. Cell Res 2016; 26:151-170
    [58] Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 2013; 51:310-325
    [59] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization:enabling diversity with identity. Nat Rev Immunol 2011; 11:750-761
    [60] Huang SCC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 2016; 45:817-830
    [61] Tao S, Chen Q, Lin C, Dong H. Linc00514 promotes breast cancer metastasis and M2 polarization of tumor-associated macrophages via Jagged1-mediated notch signaling pathway. J Exp Clin Cancer Res 2020; 39:191
    [62] Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev 2021; 121:1746-1803
    [63] Zhang X, Duan X, Hu Y, Tang Z, Miao C, Tao W, et al. One-step and facile synthesis of peptide-like poly(melphalan) nanodrug for cancer therapy. Nano Today 2021; 37:101098
    [64] You X, Wang L, Wang L, Wu J. Rebirth of aspirin synthesis by-product:prickly poly (salicylic acid) nanoparticles as self-anticancer drug carrier. Adv Funct Mater 2021; 31:2100805-n/a
    [65] Suk JS, Xu QG, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99:28-51
    [66] Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 2020; 157:142-160
    [67] Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond:strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020; 10:7921-7924
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  28
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-04
  • 修回日期:  2022-01-18
  • 录用日期:  2022-01-29
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回