[1] |
Knaus UG, Bokoch GM. The p21Rac/Cdc42-activated kinases (PAKs). Int J Biochem Cell Biol 1998;30:857-862
|
[2] |
Arias-Romero LE, Chernoff J. A tale of two PAKs. Biol Cell 2008;100:97-108
|
[3] |
Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, et al. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 1998;17:6527-6540
|
[4] |
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2017;605:20-31
|
[5] |
Rudolph J, Crawford JJ, Hoeflich KP, Wang W. Inhibitors of p21-activated kinases (PAKs). J Med Chem 2015;58:111-129
|
[6] |
Rane CK, Minden A. p21-activated kinase signaling in cancer. Semin Cancer Biol 2019;54:40-49
|
[7] |
Ye DZ, Field J. PAK signaling in cancer. Cell Logist 2012;2:105-116
|
[8] |
Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer 2014;14:13-25
|
[9] |
Costa TDF, Zhuang T, Lorent J, Turco E, Olofsson H, Masia-Balague M, et al. PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer. Nat Commun 2019;10:1-18
|
[10] |
Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakshe K, et al. Targeting PAK4 inhibits Ras-mediated signaling and multiple oncogenic pathways in high-risk Rhabdomyosarcoma. Cancer Res 2021;81:199-212
|
[11] |
Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S. p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget 2014;5:8778-8789
|
[12] |
Tabusa H, Brooks T, Massey AJ. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol Cancer Res 2013;11:109-121
|
[13] |
Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998;393:809-812
|
[14] |
Siu MK, Chan HY, Kong DS, Wong ES, Wong OG, Ngan HY, et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc Natl Acad Sci U S A 2010;107:18622-18627
|
[15] |
Zhuang T, Zhu J, Li Z, Lorent J, Zhao C, Dahlman-Wright K, Stromblad S. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells. Oncotarget 2015;6:43853-43868
|
[16] |
Fu X, Feng J, Zeng D, Ding Y, Yu C, Yang B. PAK4 confers cisplatin resistance in gastric cancer cells via PI3K/Akt- and MEK/ERK-dependent pathways. Biosci Rep 2014;34:e00094
|
[17] |
Mohammad RM, Li Y, Muqbil I, Aboukameel A, Senapedis W, Baloglu E, et al. Targeting Rho GTPase effector p21 activated kinase 4 (PAK4) suppresses p-Bad-microRNA drug resistance axis leading to inhibition of pancreatic ductal adenocarcinoma proliferation. Small GTPases 2019;10:367-377
|
[18] |
Abril-Rodriguez G, Torrejon DY, Liu W, Zaretsky JM, Nowicki TS, Tsoi J, et al. PAK4 inhibition improves PD-1 blockade immunotherapy. Nat Cancer 2019;1:46-58
|
[19] |
Gajewski TF, Fessler J. PAK4 as a cancer immune-evasion target. Nat Cancer 2020;1:18-19
|
[20] |
Ma W, Wang Y, Zhang R, Yang F, Zhang D, Huang M, et al. Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat Cancer 2020;2:83-97
|
[21] |
Staben ST, Feng JA, Lyle K, Belvin M, Boggs J, Burch JD, et al. Back pocket flexibility provides group II p21-activated kinase (PAK) selectivity for type I 1/2 kinase inhibitors. J Med Chem 2014;57:1033-1045
|
[22] |
Guo C, McAlpine I, Zhang J, Knighton DD, Kephart S, Johnson MC, et al. Discovery of pyrroloaminopyrazoles as novel PAK inhibitors. J Med Chem 2012;55:4728-4739
|
[23] |
Park JK, Kim S, Han YJ, Kim SH, Kang NS, Lee H, et al. The discovery and the structural basis of an imidazo[4,5-b]pyridine-based p21-activated kinase 4 inhibitor. Bioorg Med Chem Lett 2016;26:2580-2583
|
[24] |
Crawford JJ, Hoeflich KP, Rudolph J. p21-Activated kinase inhibitors:a patent review. Expert Opin Ther Pat 2012;22:293-310
|
[25] |
Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A 2010;107:9446-9451
|
[26] |
Senapedis W, Landesman Y, Schenone M, Karger B, Wu S, Shacham S, et al. Identification of novel small molecules as selective PAK4 allosteric modulators (PAMs) by stable isotope labeling of amino acids in cells (SILAC). Eur J Cancer 2014;50:156
|
[27] |
Mitchell S, Zhang P, Cannon M, Beaver L, Lehman A, Harrington B, et al. Anti-tumor NAMPT inhibitor, KPT-9274, mediates gender-dependent murine anemia and nephrotoxicity by regulating SIRT3-mediated SOD deacetylation. J Hematol Oncol 2021;14:101
|
[28] |
Aboukameel A, Muqbil I, Senapedis W, Baloglu E, Landesman Y, Shacham S, et al. Novel p21-activated kinase 4 (PAK4) allosteric modulators overcome drug resistance and stemness in pancreatic ductal adenocarcinoma. Mol cancer ther 2017;16:76-87
|
[29] |
Hao C, Zhao F, Song H, Guo J, Li X, Jiang X, et al. Structure-based design of 6-chloro-4-aminoquinazoline-2-carboxamide derivatives as potent and selective p21-activated kinase 4 (PAK4) inhibitors. J Med Chem 2018;61:265-285
|
[30] |
Guo J, Zhao F, Yin W, Zhu M, Hao C, Pang Y, et al. Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors. Eur J Med Chem 2018;155:197-209
|
[31] |
Hao C, Huang W, Li X, Guo J, Chen M, Yan Z, et al. Development of 2,4-diaminoquinazoline derivatives as potent PAK4 inhibitors by the core refinement strategy. Eur J Med Chem 2017;131:1-13
|
[32] |
Song S, Li X, Guo J, Hao C, Feng Y, Guo B, et al. Design, synthesis and biological evaluation of 1-phenanthryl-tetrahydroisoquinoline derivatives as novel p21-activated kinase 4 (PAK4) inhibitors. Org Biomol Chem 2015;13:3803-3818
|
[33] |
Zuccotto F, Ardini E, Casale E, Angiolini M. Through the "gatekeeper door":exploiting the active kinase conformation. J Med Chem 2010;53:2681-2694
|
[34] |
Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP, et al. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl) ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy) quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem 2006;49:6465-6488
|
[35] |
Ballard P, Bradbury RH, Harris CS, Hennequin LF, Hickinson M, Johnson PD, et al. Inhibitors of epidermal growth factor receptor tyrosine kinase:Novel C-5 substituted anilinoquinazolines designed to target the ribose pocket. Bioorg Med Chem Lett 2006;16:1633-1637
|
[36] |
Liao JJ. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J Med Chem 2007;50:409-424
|
[37] |
Crawford JJ, Lee W, Aliagas I, Mathieu S, Hoeflich KP, Zhou W, et al. Structure-guided design of group I selective p21-activated kinase inhibitors. J Med Chem 2015;58:5121-5136
|
[38] |
Blaquiere N, Castanedo GM, Burch JD, Berezhkovskiy LM, Brightbill H, Brown S, et al. Scaffold-hopping approach to discover potent, selective, and efficacious inhibitors of NF-kappaB inducing kinase. J Med Chem 2018;61:6801-6813
|
[39] |
Talele TT. Acetylene group, friend or foe in medicinal chemistry. J Med Chem 2020;63:5625-5663
|
[40] |
Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP, et al. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem 2006;49:6465-6488
|
[41] |
Ryu BJ, Kim S, Min B, Kim KY, Lee JS, Park WJ, et al. Discovery and the structural basis of a novel p21-activated kinase 4 inhibitor. Cancer Lett 2014;349:45-50
|
[42] |
Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, et al. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 2002;277:550-558
|
[43] |
Yun CY, You ST, Kim JH, Chung JH, Han SB, Shin EY, et al. p21-activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF and β-Catenin/MITF pathways. J Invest Dermatol 2015;135:1385-1394
|
[44] |
Cai S, Ye Z, Wang X, Pan Y, Weng Y, Lao S, et al. Overexpression of P21-activated kinase 4 is associated with poor prognosis in non-small cell lung cancer and promotes migration and invasion. J Exp Clin Cancer Res 2015;34:48
|
[45] |
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019;11:eaaw8412
|
[46] |
Osmani N, Goetz JG. Multiscale imaging of metastasis in zebrafish. Trends Cancer 2019;5:766-778
|
[47] |
Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4:35-44
|
[48] |
Oft M, Heider K-H, Beug H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998;8:1243-1252
|
[49] |
Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, et al. Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 2007;117:1305-1313
|
[50] |
Padua D, Zhang XHF, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGF beta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008;133:66-77
|
[51] |
Siegel PM, Shu WP, Cardiff RD, Muller WJ, Massague J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. P Natl Acad Sci U S A 2003;100:8430-8435
|
[52] |
Fan Y, Wang X, Li Y, Zhao X, Zhou J, Ma X, et al. PAK4 enhances TGF-beta 1-induced epithelial-mesenchymal transition through activating beta-catenin signaling pathway in renal tubular epithelial cells. Int J Clin Exp Patho 2018;11:3026-3035
|
[53] |
Jin R, Liu W, Menezes S, Yue F, Zheng M, Kovacevic Z, et al.The metastasis suppressor NDRG1 modulates the phosphorylation and nuclear translocation of beta-catenin through mechanisms involving FRAT1 and PAK4. J Cell Sci 2014;127:3116-3130
|
[54] |
Kesanakurti D, Maddirela D, Banasavadi-Siddegowda YK, Lai TH, Qamri Z, Jacob NK, et al. A novel interaction of PAK4 with PPARgamma to regulate Nox1 and radiation-induced epithelial-to-mesenchymal transition in glioma. Oncogene 2017;36:5309-5320
|
[55] |
Chen T, Wang T, Liang W, Zhao Q, Yu Q, Ma CM, et al. PAK4 phosphorylates fumarase and blocks TGFbeta-induced cell growth arrest in lung cancer cells. Cancer Res 2019;79:1383-1397
|
[56] |
Huang J, Chen Z, Lai Z, Liu Y, Yu D, Wu L, et al. Kaempferol ameliorates the regulatory effects of PVT1/miR-214 on epithelial-mesenchymal transition through the PAK4/beta-catenin axis in SRA01/04 cells. Future Med Chem 2021;13:613-623
|
[57] |
Burlingham BT, Widlanski TS. An intuitive look at the relationship of Ki and IC50:a more general use for the Dixon Plot. J Chem Educ 2003;80:214-218
|