[1] |
Sukari A, Nagasaka M, Al-Hadidi A, Lum LG. Cancer immunology and immunotherapy. Anticancer Res 2016;36:5593-5606
|
[2] |
Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol 2019;94:S3-S9
|
[3] |
Korman A, Yellin M, Keler T. Tumor immunotherapy:preclinical and clinical activity of anti-CTLA4 antibodies. Curr Opin Investig Drugs 2005;6:582-591
|
[4] |
Kiaie SH, Sanaei MJ, Heshmati M, Asadzadeh Z, Azimi I, Hadidi S, et al. Immune checkpoints in targeted-immunotherapy of pancreatic cancer:new hope for clinical development. Acta Pharm Sin B 2021;11:1083-1097
|
[5] |
Lee JJ, Chu E. Recent advances in the clinical development of immune checkpoint blockade therapy for mismatch repair proficient (PMMR)/non-MSI-H metastatic colorectal cancer. Clin Colorectal Cancer 2018;17:258-273
|
[6] |
Mehrvarz Sarshekeh A, Overman MJ, Kopetz S. Nivolumab in the treatment of microsatellite instability high metastatic colorectal cancer. Future Oncol 2018;14:1869-1874
|
[7] |
Flynn MJ, Larkin JMG. Novel combination strategies for enhancing efficacy of immune checkpoint inhibitors in the treatment of metastatic solid malignancies. Expert Opin Pharmacother 2017;18:1477-1490
|
[8] |
Kon E, Benhar I. Immune checkpoint inhibitor combinations:current efforts and important aspects for success. Drug Resist Updat 2019;45:13-29
|
[9] |
Yang W, Li S, Yang Q. Risk of dermatologic and mucosal adverse events associated with PD-1/PD-L1 inhibitors in cancer patients:a meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019;98:e15731
|
[10] |
Wang L, Ma Q, Yao R, Liu J. Current status and development of anti- PD-1/PD-L1 immunotherapy for lung cancer. Int Immunopharmacol 2020;79:106088
|
[11] |
Basu S, Yang J, Xu B, Magiera-Mularz K, Skalniak L, Musielak B, et al. Design, synthesis, evaluation, and structural studies of C2-symmetric small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein-protein interaction. J Med Chem 2019;62:7250-7263
|
[12] |
Kopalli SR, Kang TB, Lee KH, Koppula S. Novel small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy:a review update of patent literature. Recent Pat Anticancer Drug Discov 2019;14:100-112
|
[13] |
Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target 2019;27:244-256
|
[14] |
Sasikumar PG, Ramachandra M. Small-molecule immune checkpoint inhibitors targeting PD-1/PD-L1 and other emerging checkpoint pathways. BioDrugs 2018;32:481-497
|
[15] |
Shaabani S, Huizinga HPS, Butera R, Kouchi A, Guzik K, Magiera-Mularz K, et al. A patent review on PD-1/PD-L1 antagonists:small molecules, peptides, and macrocycles (2015-2018). Expert Opin Ther Pat 2018;28:665-678
|
[16] |
Lee JJ, Powderly JD, Patel MR, Brody J, Hamilton EP, Infante JR, et al. Phase 1 trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints PD-1 and vista, in patients (PTS) with advanced solid tumor or lymphomas. J Clin Oncol 2017;35:TPS3099
|
[17] |
Jin J, Xue N, Liu Y, Fu R, Wang M, Ji M, et al. A novel S1P1 modulator IMMH002 ameliorates psoriasis in multiple animal models. Acta Pharm Sin B 2020;10:276-288
|
[18] |
Hu Z, Yu P, Du G, Wang W, Zhu H, Li N, et al. PCC0208025 (BMS202), a small molecule inhibitor of PD-L1, produces an antitumor effect in B16-F10 melanoma-bearing mice. PLoS One 2020;15:e0228339
|
[19] |
Ashizawa T, Iizuka A, Tanaka E, Kondou R, Miyata H, Maeda C, et al. Antitumor activity of the PD-1/PD-L1 binding inhibitor BMS-202 in the humanized MHC-double knockout nog mouse. Biomed Res 2019;40:243-250
|
[20] |
Wang Y, Wang H, Yao H, Li C, Fang JY, Xu J. Regulation of PD-L1:emerging routes for targeting tumor immune evasion. Front Pharmacol 2018;9:536
|
[21] |
Wang Y, Liu X, Zou X, Wang S, Luo L, Liu Y, et al. Metabolism and interspecies variation of IMMH-010, a programmed cell death ligand 1 inhibitor prodrug. Pharmaceutics 2021;13:598
|
[22] |
Yang Y. Cancer immunotherapy:harnessing the immune system to battle cancer. J Clin Invest 2015;125:3335-3337
|
[23] |
Haanen JB, Robert C. Immune checkpoint inhibitors. Prog Tumor Res 2015;42:55-66
|
[24] |
Ni L, Dong C. New checkpoints in cancer immunotherapy. Immunol Rev 2017;276:52-65
|
[25] |
Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer:current status and future directions. Cancer Immunol Immunother 2017;66:551-564
|
[26] |
Li B, Chan HL, Chen P. Immune checkpoint inhibitors:basics and challenges. Curr Med Chem 2019;26:3009-3025
|
[27] |
Foller S, Oppel-Heuchel H, Fetter I, Winkler Y, Grimm MO. Adverse events of immune checkpoint inhibitors. Urologe A 2017;56:486-491
|
[28] |
Zhan MM, Hu XQ, Liu XX, Ruan BF, Xu J, Liao C. From monoclonal antibodies to small molecules:the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today 2016;21:1027-1036
|
[29] |
Guzik K, Zak KM, Grudnik P, Magiera K, Musielak B, Torner R, et al. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J Med Chem 2017;60:5857-5867
|
[30] |
Musielak B, Kocik J, Skalniak L, Magiera-Mularz K, Sala D, Czub M, et al. CA-170-a potent small-molecule PD-L1 inhibitor or not?. Molecules 2019;24:2804
|
[31] |
Tagliamento M, Bironzo P, Novello S. New emerging targets in cancer immunotherapy:the role of VISTA. ESMO Open 2020;4:e000683
|
[32] |
Yang M, Liang C, Swaminathan K, Herrlinger S, Lai F, Shiekhattar R, et al. A C9ORF72/SMCR8-containing complex regulates ulk1 and plays a dual role in autophagy. Sci Adv 2016;2:e1601167
|
[33] |
Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Domling A, et al. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016;7:30323-30335
|