留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model

Menghuan Tang Kai Lin Mythili Ramachandran Longmeng Li Hongye Zou Huzhi Zheng Zhao Ma Yuanpei Li

Menghuan Tang, Kai Lin, Mythili Ramachandran, Longmeng Li, Hongye Zou, Huzhi Zheng, Zhao Ma, Yuanpei Li. A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.04.005
引用本文: Menghuan Tang, Kai Lin, Mythili Ramachandran, Longmeng Li, Hongye Zou, Huzhi Zheng, Zhao Ma, Yuanpei Li. A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.04.005
Menghuan Tang, Kai Lin, Mythili Ramachandran, Longmeng Li, Hongye Zou, Huzhi Zheng, Zhao Ma, Yuanpei Li. A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.04.005
Citation: Menghuan Tang, Kai Lin, Mythili Ramachandran, Longmeng Li, Hongye Zou, Huzhi Zheng, Zhao Ma, Yuanpei Li. A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.04.005

A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model

doi: 10.1016/j.apsb.2022.04.005
基金项目: 

We thank the support from NIH/NCI (R01CA199668, R01CA232845), NIH/NIDCR (1R01DE029237, USA), NIH/NICHD (R01HD086195, USA), UC Davis Comprehensive Cancer Centre Support Grant (CCSG, USA) awarded by the National Cancer Institute (NCI P30CA093373, USA). Cartoons in Fig. 1 were created with BioRender.com.

详细信息
    通讯作者:

    Zhao Ma,E-mail:mazhao@sdu.edu.cn

    Yuanpei Li,E-mail:lypli@ucdavis.edu

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383522001757/pdf?md5=c7c0142f989c9c9322ddf9fd96594d35&pid=1-s2.0-S2211383522001757-main.pdf

A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model

Funds: 

We thank the support from NIH/NCI (R01CA199668, R01CA232845), NIH/NIDCR (1R01DE029237, USA), NIH/NICHD (R01HD086195, USA), UC Davis Comprehensive Cancer Centre Support Grant (CCSG, USA) awarded by the National Cancer Institute (NCI P30CA093373, USA). Cartoons in Fig. 1 were created with BioRender.com.

  • 摘要: Hybrid lipid-nanoparticle complexes have shown attractive characteristics as drug carriers due to their integrated advantages from liposomes and nanoparticles. Here we developed a kind of lipid-small molecule hybrid nanoparticles (LPHNPs) for imaging and treatment in an orthotopic glioma model. LPHNPs were prepared by engineering the co-assembly of lipids and an amphiphilic pheophorbide a-quinolinium conjugate (PQC), a mitochondria-targeting small molecule. Compared with the pure nanofiber self-assembled by PQC, LPHNPs not only preserve the comparable antiproliferative potency, but also possess a spherical nanostructure that allows the PQC molecules to be administrated through intravenous injection. Also, this co-assembly remarkably improved the drug-loading capacity and formulation stability against the physical encapsulation using conventional liposomes. By integrating the advantages from liposome and PQC molecule, LPHNPs have minimal system toxicity, enhanced potency of photodynamic therapy (PDT) and visualization capacities of drug biodistribution and tumor imaging. The hybrid nanoparticle demonstrates excellent curative effects to significantly prolong the survival of mice with the orthotopic glioma. The unique co-assembly of lipid and small molecule provides new potential for constructing new liposome-derived nanoformulations and improving cancer treatment.

     

  • [1] Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes:applications in drug discovery and drug delivery. Mol Pharmaceut 2009;6:1264-1276
    [2] Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int J Nanomed 2007;2:595-607
    [3] Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome:classification, preparation, and applications. Nanoscale Res Lett 2013;8:102
    [4] Blanken D, Foschepoth D, Serrao AC, Danelon C. Genetically controlled membrane synthesis in liposomes. Nat Commun 2020;11:4317
    [5] Beltran-Gracia E, Lopez-Camacho A, Higuera-Ciapara I, Velazquez-Fernandez JB, Vallejo-Cardona AA. Nanomedicine review:clinical developments in liposomal applications. Cancer Nanotechnol 2019;10:11
    [6] Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015;6:286
    [7] Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, et al. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 2016;45:6520-6545
    [8] Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, et al. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017;113:177-200
    [9] Wang L, Yang CQ, Wang J. Effects of loading procedures of magnetic nanoparticles on the structure and physicochemical properties of cisplatin magnetic liposomes. J Microencapsul 2012;29:781-789
    [10] Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliver Rev 2020;167:170-188
    [11] Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform:state of the art, emerging technologies, and perspectives. Int J Nanomed 2019;14:1937-1952
    [12] Vargas KM, Shon YS. Hybrid lipid-nanoparticle complexes for biomedical applications. J Mater Chem B 2019;7:695-708
    [13] Jose C, Amra K, Bhavsar C, Momin M, Omri A. Polymeric lipid hybrid nanoparticles:properties and therapeutic applications. Crit Rev Ther Drug 2018;35:555-588
    [14] Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbuhler I, et al. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Edit 2006;45:5478-5483
    [15] Lim YT, Noh YW, Cho JH, Han JH, Choi BS, Kwon J, et al. Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. J Am Chem Soc 2009;131:17145-17154
    [16] Thamphiwatana S, Gao WW, Pornpattananangkul D, Zhang QZ, Fu V, Li JY, et al. Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Mater Chem B 2014;2:8201-8207
    [17] Zhang XB, Li N, Zhang SW, Sun BJ, Chen Q, He ZG, et al. Emerging carrier-free nanosystems based on molecular self-assembly of pure drugs for cancer therapy. Med Res Rev 2020;40:1754-1775
    [18] Ma Z, Li J, Lin K, Ramachandran M, Zhang D, Showalter M, et al. Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat Commun 2020;11:4615
    [19] Wang HX, Lu ZJ, Wang LJ, Guo TT, Wu JP, Wan JQ, et al. New generation nanomedicines constructed from self-assembling small-molecule prodrugs alleviate cancer drug toxicity. Cancer Res 2017;77:6963-6974
    [20] Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu DF, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliver Rev 2018;131:3-21
    [21] Lin K, Ma Z, Li J, Tang M, Lindstrom A, Ramachandran M, et al. Single small molecule-assembled mitochondria targeting nanofibers for enhanced photodynamic cancer therapy in vivo. Adv Funct Mater 2020;31:2008460
    [22] Zhang HW. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol 2017;1522:17-22
    [23] Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964;8:660-668
    [24] Hong YN, Lam JWY, Tang BZ. Aggregation-induced emission:phenomenon, mechanism and applications. Chem Commun 2009;29:4332-4353
    [25] Li Y, Lin TY, Luo Y, Liu Q, Xiao W, Guo W, et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun 2014;5:4712
    [26] Cheng HB, Li YY, Tang BZ, Yoon J. Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. Chem Soc Rev 2020;49:21-31
    [27] Noh I, Lee D, Kim H, Jeong CU, Lee Y, Ahn JO, et al. Enhanced photodynamic cancer treatment by mitochondria-targeting and brominated near-infrared fluorophores. Adv Sci (Weinh) 2018;5:1700481
    [28] Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res 2013;12:255-264
    [29] Arias-Alpizar G, Kong L, Vlieg RC, Rabe A, Papadopoulou P, Meijer MS, et al. Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nat Commun 2020;11:3638
    [30] Cho H, Cho YY, Shim MS, Lee JY, Lee HS, Kang HC. Mitochondria-targeted drug delivery in cancers. Bba-Mol Basis Dis 2020;1866:165808
    [31] Logan A, Pell VR, Shaffer KJ, Evans C, Stanley NJ, Robb EL, et al. Assessing the mitochondrial membrane potential in cells and in vivo using targeted click chemistry and mass spectrometry. Cell Metab 2016;23:379-385
    [32] Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal biochem 2018;552:50-59
    [33] Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018;17:865-886
    [34] Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1-13
    [35] Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 2003;8:115-128
    [36] de la Mata M, Cotan D, Villanueva-Paz M, de Lavera I, Alvarez-Cordoba M, Luzon-Hidalgo R, et al. Mitochondrial dysfunction in lysosomal storage disorders. Diseases 2016;4:31
    [37] Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Therapeut 2001;92:57-70
    [38] Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis 2007;12:913-922
    [39] Fleury C, Mignotte B, Vayssiere J-L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002;84:131-141
    [40] Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer:focus on malignant glioma. Clin Exp Pharmacol P 2021;48:445-454
    [41] Ju RJ, Mu LM, Li XT, Li CQ, Cheng ZJ, Lu WL. Development of functional docetaxel nanomicelles for treatment of brain glioma. Artif Cell Nanomed B 2018;46:1180-1190
    [42] Xin HL, Jiang Y, Lv W, Xu JP. Liposome-based drug delivery for brain tumor theranostics. In:Kesharwani P and Gupta U, editors. Nanotechnology-based targeted drug delivery systems for brain tumors. Elsevier Inc.; 2018:p. 245-266
    [43] Genovesi LA, Puttick S, Millar A, Kojic M, Ji P, Lagendijk AK, et al. Patient-derived orthotopic xenograft models of medulloblastoma lack a functional blood-brain barrier. Neuro Oncol 2021;23:732-742
    [44] Bayona AMD, Mroz P, Thunshelle C, Hamblin MR. Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers. Chem Biol Drug Des 2017;89:192-206
    [45] Huang HY, Hernandez R, Geng JM, Sun HT, Song WT, Chen F, et al. A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 2016;76:25-32
    [46] Cheng L, Jiang D, Kamkaew A, Valdovinos HF, Im HJ, Feng L, et al. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv Funct Mater 2017;27:1702928
    [47] Cramer SW, Chen CC. Photodynamic therapy for the treatment of glioblastoma. Front Surg 2019;6:81
    [48] Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours:a complementary approach to conventional therapies. Cancer Treat Rev 2014;40:229-241
    [49] Akimoto J, Haraoka J, Aizawa K. Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagn Photodyn 2012;9:91-99
    [50] Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme:an overview of emerging therapeutic targets. Front Oncol 2019;9:963
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  56
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-03-07
  • 录用日期:  2022-03-31
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回