[1] |
Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes:applications in drug discovery and drug delivery. Mol Pharmaceut 2009;6:1264-1276
|
[2] |
Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int J Nanomed 2007;2:595-607
|
[3] |
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome:classification, preparation, and applications. Nanoscale Res Lett 2013;8:102
|
[4] |
Blanken D, Foschepoth D, Serrao AC, Danelon C. Genetically controlled membrane synthesis in liposomes. Nat Commun 2020;11:4317
|
[5] |
Beltran-Gracia E, Lopez-Camacho A, Higuera-Ciapara I, Velazquez-Fernandez JB, Vallejo-Cardona AA. Nanomedicine review:clinical developments in liposomal applications. Cancer Nanotechnol 2019;10:11
|
[6] |
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015;6:286
|
[7] |
Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, et al. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 2016;45:6520-6545
|
[8] |
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, et al. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017;113:177-200
|
[9] |
Wang L, Yang CQ, Wang J. Effects of loading procedures of magnetic nanoparticles on the structure and physicochemical properties of cisplatin magnetic liposomes. J Microencapsul 2012;29:781-789
|
[10] |
Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliver Rev 2020;167:170-188
|
[11] |
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform:state of the art, emerging technologies, and perspectives. Int J Nanomed 2019;14:1937-1952
|
[12] |
Vargas KM, Shon YS. Hybrid lipid-nanoparticle complexes for biomedical applications. J Mater Chem B 2019;7:695-708
|
[13] |
Jose C, Amra K, Bhavsar C, Momin M, Omri A. Polymeric lipid hybrid nanoparticles:properties and therapeutic applications. Crit Rev Ther Drug 2018;35:555-588
|
[14] |
Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbuhler I, et al. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Edit 2006;45:5478-5483
|
[15] |
Lim YT, Noh YW, Cho JH, Han JH, Choi BS, Kwon J, et al. Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. J Am Chem Soc 2009;131:17145-17154
|
[16] |
Thamphiwatana S, Gao WW, Pornpattananangkul D, Zhang QZ, Fu V, Li JY, et al. Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Mater Chem B 2014;2:8201-8207
|
[17] |
Zhang XB, Li N, Zhang SW, Sun BJ, Chen Q, He ZG, et al. Emerging carrier-free nanosystems based on molecular self-assembly of pure drugs for cancer therapy. Med Res Rev 2020;40:1754-1775
|
[18] |
Ma Z, Li J, Lin K, Ramachandran M, Zhang D, Showalter M, et al. Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat Commun 2020;11:4615
|
[19] |
Wang HX, Lu ZJ, Wang LJ, Guo TT, Wu JP, Wan JQ, et al. New generation nanomedicines constructed from self-assembling small-molecule prodrugs alleviate cancer drug toxicity. Cancer Res 2017;77:6963-6974
|
[20] |
Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu DF, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliver Rev 2018;131:3-21
|
[21] |
Lin K, Ma Z, Li J, Tang M, Lindstrom A, Ramachandran M, et al. Single small molecule-assembled mitochondria targeting nanofibers for enhanced photodynamic cancer therapy in vivo. Adv Funct Mater 2020;31:2008460
|
[22] |
Zhang HW. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol 2017;1522:17-22
|
[23] |
Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964;8:660-668
|
[24] |
Hong YN, Lam JWY, Tang BZ. Aggregation-induced emission:phenomenon, mechanism and applications. Chem Commun 2009;29:4332-4353
|
[25] |
Li Y, Lin TY, Luo Y, Liu Q, Xiao W, Guo W, et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun 2014;5:4712
|
[26] |
Cheng HB, Li YY, Tang BZ, Yoon J. Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. Chem Soc Rev 2020;49:21-31
|
[27] |
Noh I, Lee D, Kim H, Jeong CU, Lee Y, Ahn JO, et al. Enhanced photodynamic cancer treatment by mitochondria-targeting and brominated near-infrared fluorophores. Adv Sci (Weinh) 2018;5:1700481
|
[28] |
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res 2013;12:255-264
|
[29] |
Arias-Alpizar G, Kong L, Vlieg RC, Rabe A, Papadopoulou P, Meijer MS, et al. Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nat Commun 2020;11:3638
|
[30] |
Cho H, Cho YY, Shim MS, Lee JY, Lee HS, Kang HC. Mitochondria-targeted drug delivery in cancers. Bba-Mol Basis Dis 2020;1866:165808
|
[31] |
Logan A, Pell VR, Shaffer KJ, Evans C, Stanley NJ, Robb EL, et al. Assessing the mitochondrial membrane potential in cells and in vivo using targeted click chemistry and mass spectrometry. Cell Metab 2016;23:379-385
|
[32] |
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal biochem 2018;552:50-59
|
[33] |
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018;17:865-886
|
[34] |
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1-13
|
[35] |
Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 2003;8:115-128
|
[36] |
de la Mata M, Cotan D, Villanueva-Paz M, de Lavera I, Alvarez-Cordoba M, Luzon-Hidalgo R, et al. Mitochondrial dysfunction in lysosomal storage disorders. Diseases 2016;4:31
|
[37] |
Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Therapeut 2001;92:57-70
|
[38] |
Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis 2007;12:913-922
|
[39] |
Fleury C, Mignotte B, Vayssiere J-L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002;84:131-141
|
[40] |
Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer:focus on malignant glioma. Clin Exp Pharmacol P 2021;48:445-454
|
[41] |
Ju RJ, Mu LM, Li XT, Li CQ, Cheng ZJ, Lu WL. Development of functional docetaxel nanomicelles for treatment of brain glioma. Artif Cell Nanomed B 2018;46:1180-1190
|
[42] |
Xin HL, Jiang Y, Lv W, Xu JP. Liposome-based drug delivery for brain tumor theranostics. In:Kesharwani P and Gupta U, editors. Nanotechnology-based targeted drug delivery systems for brain tumors. Elsevier Inc.; 2018:p. 245-266
|
[43] |
Genovesi LA, Puttick S, Millar A, Kojic M, Ji P, Lagendijk AK, et al. Patient-derived orthotopic xenograft models of medulloblastoma lack a functional blood-brain barrier. Neuro Oncol 2021;23:732-742
|
[44] |
Bayona AMD, Mroz P, Thunshelle C, Hamblin MR. Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers. Chem Biol Drug Des 2017;89:192-206
|
[45] |
Huang HY, Hernandez R, Geng JM, Sun HT, Song WT, Chen F, et al. A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 2016;76:25-32
|
[46] |
Cheng L, Jiang D, Kamkaew A, Valdovinos HF, Im HJ, Feng L, et al. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv Funct Mater 2017;27:1702928
|
[47] |
Cramer SW, Chen CC. Photodynamic therapy for the treatment of glioblastoma. Front Surg 2019;6:81
|
[48] |
Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours:a complementary approach to conventional therapies. Cancer Treat Rev 2014;40:229-241
|
[49] |
Akimoto J, Haraoka J, Aizawa K. Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagn Photodyn 2012;9:91-99
|
[50] |
Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme:an overview of emerging therapeutic targets. Front Oncol 2019;9:963
|