Allen, G.C., Flores-Vergara, M.A., Krasnyanski, S., Kumar, S., Thompson, W.F., 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320-2325
|
Arora, S., Steuernagel, B., Gaurav, K., Chandramohan, S., Long, Y.M., Matny, O., Johnson, R., Enk, J., Periyannan, S., Singh, N., et al., 2019. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139-143
|
Bayer, P.E., Golicz, A.A., Scheben, A., Batley, J., Edwards, D., 2020. Plant pan-genomes are the new reference. Nat. Plants 6, 914-920
|
Ben-David, R., Xie, W.L., Peleg, Z., Saranga, Y., Dinoor, A., Fahima, T., 2010. Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor. Appl. Genet. 121, 499-510
|
Bialas, A., Zess, E.K., Concepcion, J.C.D.L., Franceschetti, M., Pennington, H.G., Yoshida, K., Upson, J.L., Chanclud, E., Wu, C.H., Langner, T., 2018. Lessons in effector and NLR biology of plant-microbe system. Mol. Plant Microbe In. 31, 34-45
|
Fu, D.L., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X.M., Sela, H., Fahima, T., Dubcovsky, J., 2009. A novel kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357-1360
|
Gaurav, K., Arora, S., Silva, P., Sanchez-Martin, J., Horsnell, R., Gao, L.L., Brar, G.S., Widrig, V., Raupp, W.J., Singh, N., et al., 2021. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. doi.org/10.1038/s41587-021-01058-4
|
Golicz, A.A., Bayer, P.E., Barker, G.C., Edger, P.P., Kim, H., Martinez, P.A., Chan, C.K.K., Severn-Ellis, A., McCombie, W.R., Parkin, I.A.P., et al., 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 13390
|
Hafeez, A.N., Arora, S., Ghosh, S., Gilbert, D., Bowden, R.L., Wulff, B.B.H., 2021. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant 14, 1053-1070
|
Hewitt, T., Mueller, M.C., Molnar, I., Mascher M., Holosova K., Simkova H., Kunz, L., Zhang, J.P., Li, J.B., Bhatt, D., et al., 2020. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognize its corresponding AvrPm1a effector from Blumeria graminis. New Phytol. 229, 2812-2826
|
Huang L., Sela H., Feng L., Chen Q., Krugman T., Yan J., Dubcovsky J. Fahima, T., 2016. Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. Theor. Appl. Genet. 129, 921-934
|
Ishida, Y., Tsunashima, M., Hiei, Y., Komari, T., 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol. 1223, 189-198
|
Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V.S., Gundlach, H., Monat, C., Lux, T., Kamal, N., Lang, D., Himmelbach, A., et al., 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284-289
|
Ji, X.L., Xie, C.J., Ni, Z.F., Yang, T., Nevo, E., Fahina, T., Liu, Z.Y., Sun, Q.X., 2008. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159, 385-390
|
Klymiuk V., Fatiukha A., Fahima T., 2019. Wheat tandem kinase provide insights on disease-resistance gene flow and host-parasite co-evolution. Plant J. 98, 667-679
|
Klymiuk, V., Yaniv, E., Huang, L., Raats, D., Fatiukha, A., Chen, S.S., Feng, L.H., Frenkel, Z., Krugman, T., Lidzbarsky, G., et al., 2018. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 9, 3735
|
Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E. Selter, L.L., Keller, B., 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360-1363
|
Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874
|
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948
|
Li, G.Q., Cowger, C., Wang, X.W., Carver, B.F., Xu, X.Y., 2019. Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar. Theor. Appl. Genet. 132, 2625-2632
|
Li, M.M., Dong, L.L., Li, B.B., Wang, Z.Z., Xie, J.Z., Qiu, D., Li, Y.H., Shi, W.Q., Yang, L.J., Wu, Q.H., et al., 2020. A NLR protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 228, 1027-1037
|
Li, Y.H., Wei, Z.Z., Fatiukha, A., Jaiwar, S., Wang, H.C., Hasan, S., Liu, Z.Y., Sela, H., Krugman, T., Fahima, T., 2021. TdPm60 identified in wild emmer wheat is an ortholog of Pm60 and constitutes a strong candidate for PmG16 powdery mildew resistance. Theor. Appl. Genet. 134, 2777-2793
|
Liang, J.C., Fu, B.S., Tang, W.B., Khan, N.U., Li, N., Ma, Z.Q., 2016. Fine mapping of two wheat powdery mildew resistance genes located at the Pm1 cluster. Plant Genome 9, 1-9
|
Liang, Y., Zhang, D.Y., Ouyang, S.H., Xie, J.Z., Wu, Q.H., Wang, Z.Z., Cui, Y., Lu, P., Zhang, D., Liu, Z.J., et al., 2015. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii. Theor. Appl. Genet. 128, 1617-1629
|
Lincoln, L., Lander, E., 1993. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0:A tutorial and reference manual. Cambridge, Lander ES, 1-9
|
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods (San Diego, Calif.) 25, 402-408
|
Lu, P., Guo, L., Wang, Z.Z., Li, B.B., Li, J., Li, Y.H., Qiu, D., Shi. W.Q., Yang, L.J., Wang, N., et al., 2020. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 11, 680
|
Luo, S., Zhang, Y., Hu, Q., Chen, J.J., Li, K.P., Liu, C., Liu, H., Wang, W., Kuang, H.H., 2012. Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol. 159, 197-210
|
Ma, S.W., Wang, M., Wu, J.H., Guo, W.L., Chen, Y.M., Li, G.W., Wang, Y.P., Shi, W.M., Xia, G.M., et al., 2021. WheatOmics:a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol. Plant 14, 1965-1968
|
Marchal, C., Zhang, J.P., Zhang, P., Fenwick, P., Steuernagel, B., Adamski, N.M., Boyd, L., McIntosh, R., Wulff, B.B.H., Berry, S., et al., 2018. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 4, 662-668
|
McIntosh, R.A., Dubcovsky, J., Rogers, W.J., Xia, X.C., Raupp, W.J., 2021. Catalogue of gene symbols for wheat:2021 supplement. Annu Wheat Newsletter 67, 104-113
|
Meyers, B.C., Kozik, A., Griego, A., Kuang, H.H., Michelmore, R.W., 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809-834
|
Montenegro, J.D., Golicz, A.A., Bayer, P.E., Hurgobin, B., Lee, H., Chan, C.K., Visendi, P., Lai, K., Dolezel, J., Batley, J., et al., 2017. The pangenome of hexaploid bread wheat. 90, 1007-1013
|
Monosi, B., Wisser, R.J., Pennill, L., Hulbert, S.H., 2004. Full-genome analysis of resistance gene homologues in rice. Theor. Appl. Genet. 109, 1434-1447
|
Moseman, J.G., Nevo, E., Morshidy, M.A.E., Zohary, D., 1984. Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33, 41-47
|
Narusaka, M., Shirasu, K., Noutoshi, Y., Kubo, Y., Shiraishi, T., Iwabuchi, M., Narusaka1, Y., 2009. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J. 60, 218-226
|
Neu, C., Stein, N., Keller, B., 2002. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45, 737-744
|
Nevo, E., Korol, A.B., Beiles, A., Fahima, T., 2002. Evolution of wild emmer and wheat improvement:population genetics, genetic resources, and genome organization of wheat's progenitor, Triticum dicoccoides. Berlin, Germany:Springer-Verlag
|
Ouyang, S.H., Zhang, D., Han, J., Zhao, X.J., Cui, Y., Song, W., Huo, N.X., Liang, Y., Xie, J.Z., Wang, Z.Z., et al., 2014. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS ONE 9, e100160
|
Qiu, Y.C., Zhou, R.H., Kong, X.Y., Zhang, S.S., Jia, J.Z., 2005. Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor. Appl. Genet. 111, 1524-1531
|
Sanchez-Martin, J., Steuernagel, B., Ghosh, S., Herren, G., Hurni, S., Adamski, N., Vrana, J., Kubalakova, M., Krattinger, S.G., Wicker, T., et al., 2016. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221
|
Sanchez-Martin, J., and Keller, B., 2021. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Curr Opin Plant Biol. 62, 102053
|
Sanchez-Martin, J., Widrig, V., Herren, G., Wicker, T., Zbinden, H., Gronnier, G., Sporri, L., Praz, C.R., Heuberger, M., Kolodziej, M., et al., 2021. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nature Plants 7, 327-341
|
Sears, E.R., Briggle, L.W., 1969. Mapping gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci. 9, 96-97
|
Steuernagel, B., Periyannan, S.K., Hernandez-Pinzon, I., Witek, K., Rouse, M.N., Yu, G.T., Hatta, A., Ayliffe, M., Bariana, H., Jones, J.D.G., et al., 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652-655
|
Thind, A.K., Wicker, T., Krattinger, S.G., (2017) Rapid identification of rust resistance genes through cultivar-specific de novo chromosome assemblies. In:Periyannan S. (eds) Wheat Rust Diseases. Methods Mol. Biol. 1659, 245-255
|
Tian, D., Traw, M., Chen, J., Kreitman, M., Bergelson, J., 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74-77
|
Van de Weyer, A.-L., Monteiro, F., Furzer, O.J., Nishimura, M.T., Cevik, V., Witek, K., Jones, J.D.G., Dangl, J.L., Weigel, D., Bemm, F., 2019. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260-1272
|
Walkowiak, S., Gao, L.L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez R.H. Kolodziej, M.C., Delorean, E., Thambugala, D., et al., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283
|
Wu, Q.H., Zhao, F., Chen, Y.X., Zhang, P.P., Zhang, H.Z., Guo, G.H., Xie, J.Z., Dong, L.L., Lu, P., Li, M.M., et al., 2021. Bulked segregant CGT-Seq-facilitated map-based cloning of a powdery mildew resistance gene originating from wild emmer wheat (Triticum dicoccoides). Plant Biotechnol. J. 19, 1288-1290
|
Xie, J.Z., Guo, G.H., Wang, Y., Hu, T.Z., Wang, L.L., Li, J.T., Qiu, D., Li, Y.H., Wu, Q.H., Lu, P., et al., 2020. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 228, 1011-1026
|
Xing, L.P., Hu, P., Liu, J.Q., Witek, K., Zhou, S., Xu, J.F., Zhou, W.H., Gao, L., Huang, Z.P., Zhang, R.Q., et al., 2018. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 11, 874-878
|
Yahiaoui, N., Srichumpa, P., Dudler, R., Keller, B., 2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploidy wheat. Plant J. 37, 528-538
|
Yao, G.Q., Zhang, J.L., Yang, L.L., Xu, H.X., Jiang, Y.M., Xiong, L., Zhang, C.Q., Zhang, Z.Z., Ma, Z.Q., Sorrells, M.E., 2007. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor. Appl. Genet. 114, 351-358
|
Yao, W., Li, G., Zhao, H., Wang, G., Lian, X., Xie, W., 2015. Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol. 16, 1-20
|
Zhang, D.Y., Zhu, K.Y., Dong, L.L., Liang, Y., Li, G.Q., Fang, T.L., Guo, G.H., Wu, Q.H., Xie, J.Z. Chen, Y.X., et al., 2019. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J. 7, 761-770
|
Zhang, L., Zheng, X.W., Qiao, L.Y., Qiao, L., Zhao, J.J., Wang, J.M., Zheng, J., 2018. Analysis of three types of resistance gene analogs in PmU region from Triticum Urartu. J. Integr. Agr. 17, 2601-2611
|
Zhao, F.K., Li, Y.H., Yang, B.J., Yuan, H.B., Jin, C., Zhou, L.X., Pei, H.C. Zhao, L.F., Li, Y.W., Zhou, Y.L., et al., 2020. Powdery mildew disease resistance and marker-assisted screening at the Pm60 locus in wild diploid wheat Triticum urartu. Crop J. 8, 252-259
|
Zhu, K.Y., Li, M.M., Wu, H.B., Zhang, D.Y., Dong, L.L., Wu, Q.H., Chen, Y.X., Xie, J.Z., Lu, P., Guo, G.H., et al., 2021. Fine mapping of powdery mildew resistance gene MlWE74 derived from wild emmer wheat (Triticum turgidum ssp. Dicoccoides) in n NBS-LRR gene cluster. Theor. Appl. Genet. https://doi.org/10.1007/s00122-021-04027-2
|
Zou, S.H., Wang, H., Li, Y.W., Kong, Z.S., Tang, D.Z., 2018. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 218, 298-309
|