Adachi, H., Sakai, T., Kourelis, J., Pai, H., Gonzalez Hernandez, J.L., Maqbool, A., Kamoun, S. (2022). Jurassic NLR:conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. bioRxiv 2020.10.12.333484
|
Axtell, M.J., and Staskawicz, B.J. (2003). Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377
|
Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., (2021). The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541
|
Bisgrove, S.R., Simonich, M.T., Smith, N.M., Sattler, A., Innes, R.W. (1994). A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6, 927-933
|
Burger, M., Willige, B.C., Chory, J. (2017). A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors. Nature Commun. 8, 2201
|
Butler, M.I., Stockwell, P.A., Black, M.A., Day, R.C., Lamont, I.L., Poulter, R.T. (2013). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PloS One 8, e57464
|
Choi, S., Jayaraman, J., Sohn, K.H. (2018). Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors. New Phytol. 219, 324-335
|
Choi, S., Prokchorchik, M., Lee, H., Gupta, R., Lee, Y., Chung, E.H., Cho, B., Kim, M.S., Kim, S.T., Sohn, K.H. (2021). Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT activates RPM1-dependent immunity in Arabidopsis. Mol. Plant 14, 1951-1960
|
Cui, H., Tsuda, K., Parker, J.E. (2015). Effector-triggered immunity:from pathogen perception to robust defense. Annu. Rev. Plant Boil. 66, 487-511
|
Dou, D., Zhou, J.M. (2012). Phytopathogen effectors subverting host immunity:different foes, similar battleground. Cell Host Microbe, 12, 484-495
|
Duxbury, Z., Wu, C.H., Ding, P. (2021). A comparative overview of the intracellular guardians of plants and animals:NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72, 155-184
|
Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265-276
|
Gomez-Gomez, L., Boller, T. (2000). FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003-1011
|
Gong, Z., Qi, J., Hu, M., Bi, G., Zhou, J.M., Han, G.Z. (2022). The origin and evolution of a plant resistosome. Plant Cell 34, 1600-1620
|
He, P., Shan, L., Sheen, J. (2007). The use of protoplasts to study innate immune responses. Methods Mol. Biol. 354, 1-9
|
Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S. (2018). UFBoot2:improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522
|
Horsefield, S., Burdett, H., Zhang, X., Manik, M.K., Shi, Y., Chen, J., Qi, T., Gilley, J., Lai, J.S., Rank, M. X., et al., (2019). NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793-799
|
Hu, M., Qi, J., Bi, G., Zhou, J.M. (2020). Bacterial effectors induce oligomerization of immune receptor ZAR1 in vivo. Mol. Plant 13, 793-801
|
Jacob, P., Kim, N.H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., (2021). Plant "helper" immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420-425
|
Jayaraman, J., Choi, S., Prokchorchik, M., Choi, D. S., Spiandore, A., Rikkerink, E.H., Templeton, M.D., Segonzac, C., Sohn, K.H. (2017). A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci. Rep. 7, 3557
|
Jayaraman, J., Yoon, M., Applegate, E.R., Stroud, E.A., Templeton, M.D. (2020). AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit. Mol. Plant Pathol. 21, 1467-1480
|
Jubic, L.M., Saile, S., Furzer, O.J., El Kasmi, F., Dangl, J.L. (2019). Help wanted:helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50, 82-94
|
Katoh, K., Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780
|
Kirik, A., Mudgett, M.B. (2009). SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc. Natl. Acad. Sci. USA 106, 20532-20537
|
Kourelis, J., and van der Hoorn, R. (2018). Defended to the nines:25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285-299
|
Laflamme, B., Dillon, M.M., Martel, A., Almeida, R., Desveaux, D., Guttman, D.S. (2020). The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 367, 763-768
|
Lapin, D., Bhandari, D.D., Parker, J.E. (2020). Origins and immunity networking functions of EDS1 family proteins. Annu. Rev. Phytopathol. 58, 253-276
|
Lewis, J.D., Abada, W., Ma, W., Guttman, D.S., Desveaux, D. (2008). The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana. J. Bacteriol. 190, 2880-2891
|
Lewis, J.D., Lee, A.H., Hassan, J.A., Wan, J., Hurley, B., Jhingree, J.R., Wang, P.W., Lo, T., Youn, J.Y., Guttman, D.S., et al., (2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc. Natl. Acad. Sci. USA 110, 18722-18727
|
Lewis, J.D., Lee, A., Ma, W., Zhou, H., Guttman, D.S., Desveaux, D. (2011). The YopJ superfamily in plant-associated bacteria. Mol. Plant Pathol. 12, 928-937
|
Li, L., Habring, A., Wang, K., Weigel, D. (2020). Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host Microbe 27, 405-417. e6
|
Liu, C., Cui, D., Zhao, J., Liu, N., Wang, B., Liu, J., Xu, E., Hu, Z., Ren, D., Tang, D., et al., (2019). Two Arabidopsis receptor-like cytoplasmic kinases SZE1 and SZE2 associate with the ZAR1-ZED1 complex and are required for effector-triggered immunity. Mol. Plant 12, 967-983
|
Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., Logemann, E., Yu, D., Wang, J., Jirschitzka, J., et al., (2020). Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eabe3069
|
Macho, A.P., Zumaquero, A., Ortiz-Martin, I., Beuzon, C.R. (2007). Competitive index in mixed infections:a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Mol. Plant Pathol. 8, 437-450
|
Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., Dangl, J.L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389
|
Mackey, D., Holt, B.F., 3rd, Wiig, A., Dangl, J.L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754
|
Martel, A., Laflamme, B., Seto, D., Bastedo, D.P., Dillon, M.M., Almeida, R., Guttman, D.S., Desveaux, D. (2020). Immunodiversity of the Arabidopsis ZAR1 NLR is conveyed by receptor-like cytoplasmic kinase sensors. Front. Plant Sci. 11, 1290
|
Martin, R., Qi, T., Zhang, H., Liu, F., King, M., Toth, C., Nogales, E., Staskawicz, B.J. (2020). Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993
|
McCann, H.C., Rikkerink, E.H., Bertels, F., Fiers, M., Lu, A., Rees-George, J., Andersen, M. T., Gleave, A.P., Haubold, B., Wohlers, M. W., et al., (2013). Genomic analysis of the Kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog. 9, e1003503
|
Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q. 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274
|
Pilkington, S.M., Crowhurst, R., Hilario, E., Nardozza, S., Fraser, L., Peng, Y., Gunaseelan, K., Simpson, R., Tahir, J., Deroles, S.C., et al., (2018). A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 19, 257
|
Price, M.N., Dehal, P.S., Arkin, A.P. (2010). FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490
|
Reuber, T.L., Ausubel, F.M. (1996). Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. Plant Cell 8:241-249
|
Schultink, A., Qi, T., Bally, J., Staskawicz, B.J. (2019). Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4. New Phytol. 221, 1001-1009
|
Seto, D., Koulena, N., Lo, T., Menna, A., Guttman, D.S., Desveaux, D. (2017). Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nat. Plants 3, 17027
|
Tang, W., Sun, X., Yue, J., Tang, X., Jiao, C., Yang, Y., Niu, X., Miao, M., Zhang, D., Huang, S., et al., (2019) Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. GigaScience 8, giz027
|
Wan, L., Essuman, K., Anderson, R. G., Sasaki, Y., Monteiro, F., Chung, E.H., Nishimura, E.O., DiAntonio, A., Milbrandt, J., Dangl, J. L., et al., (2019). TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799-803
|
Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.F., Chabannes, M., et al., (2015a). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295
|
Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H. W., Zhou, J.M., Chai, J. (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870
|
Wang, Z. P., Xing, H. L., Dong, L., Zhang, H. Y., Han, C. Y., Wang, X. C., Chen, Q. J. (2015b). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144
|
Wei, H. L., Zhang, W., Collmer, A. (2018). Modular study of the type III effector repertoire in Pseudomonas syringae pv. tomato DC3000 reveals a matrix of effector interplay in pathogenesis. Cell Rep. 23, 1630-1638
|
Wu, H., Ma, T., Kang, M., Ai, F., Zhang, J., Dong, G., Liu, J. (2019). A high-quality Actinidia chinensis (kiwifruit) genome. Hort. Res. 6, 117
|
Zhou, H., Morgan, R. L., Guttman, D. S., Ma, W. (2009). Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. Mol. Plant Microbe Interact. 22, 176-189
|