留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Silicon/2D-material photodetectors: from near-infrared to mid-infrared

Liu Chaoyue Guo Jingshu Yu Laiwen Li Jiang Zhang Ming Li Huan Shi Yaocheng Dai Daoxin

Liu Chaoyue, Guo Jingshu, Yu Laiwen, Li Jiang, Zhang Ming, Li Huan, Shi Yaocheng, Dai Daoxin. Silicon/2D-material photodetectors: from near-infrared to mid-infrared[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 10(2): 1164-1184. doi: 10.1038/s41377-021-00551-4
Citation: Liu Chaoyue, Guo Jingshu, Yu Laiwen, Li Jiang, Zhang Ming, Li Huan, Shi Yaocheng, Dai Daoxin. Silicon/2D-material photodetectors: from near-infrared to mid-infrared[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 10(2): 1164-1184. doi: 10.1038/s41377-021-00551-4

Silicon/2D-material photodetectors: from near-infrared to mid-infrared

doi: 10.1038/s41377-021-00551-4
More Information
  • Figure  1.  Summary of the working mechanisms of 2DM PDs.

    af Photon-type mechanisms: a The photovoltaic (PV) effect. The photo-excited e-h pairs driven by the built-in electric fields contribute to the photocurrents. b The internal photon emission (IPE) effect. For example, in a G-Si Schottky junction, the photo-excited hot carriers in graphene emitted over the Schottky barrier contribute to the photocurrent. c The direct tunneling (DT). d The Fowler-Nordheim (F-N) tunneling. e The photoconductive (PC) effect. The carrier density increment leads to the change of channel conductivity in a phototransistor. f The photo-gating (PG) effect. The photo-induced gating leads to the change of the channel conductivity in a phototransistor. g The thermal relaxation process in 2DMs. The carrier–carrier scattering results in the increment of the electron temperature Te, and then the optical/acoustic phonon emissions lead to the increment of lattice temperature TL. h, i Thermal-type mechanisms: h The bolometric (BOL) effect. The increment of Te or TL can be extracted by different read-outs. i The photo-thermoelectric (PTE) effect. Here Seebeck effect plays a major role. In the present example, S1 and S2 are respectively the positive and negative Seebeck coefficients.

    Figure  2.  The relation between the working mechanisms and the configurations of the 2DM PDs.

    Both metal-2DM-metal and metal-2DM+X-metal configurations have a phototransistor structure featuring a 2DM channel. The former has a pure 2DM channel, while the latter has a 2DM channel contacted with another specific material "X", such as zero-dimensional (0D) quantum dots, 1D carbon nanotubes (CNTs), 2DMs, and even bulk materials. In the 2DM-heterostructure configuration, the electrodes are connected to different materials. PV photovoltaic, IPE internal photon emission, DT direct tunneling, F-N tunneling Fowler-Nordheim (F-N) tunneling, PC photoconductive, PG Photo-gating, BOL bolometric, PTE photo-thermoelectric, QDs quantum dots, CNT carbon nanotubes.

    Figure  3.  The waveguide-integrated Si/2DM PDs with metal-2DM-metal configurations.

    a A graphene plasmonic PD working with the PV effect. b A plasmonically enhanced graphene PD working on the BOL effect. c A horizontally asymmetric graphene PD with one gate electrode based on the PTE effect. d A microring resonator-integrated two-gate graphene PD based on the PTE effect. e The Si-G hybrid plasmonic waveguide PDs operating at 1.55 and 2 μm. f A two-gate MoTe2 PD operating at 1.16 μm based on the PV effect. g A strain-engineered MoTe2 PD integrated on a microring resonator operating at 1.55 μm. h A PtSe2 PD operating at 1.55 μm. i A black-phosphorus PD operating at 1.55 μm with 3 GHz bandwidth. j A black-phosphorus PD operating at 2 μm. k A PG effect-based black phosphorus PD operating at the wavelength band of 3.68–4.03 μm. Figures reproduced with permissions from: a ref. 108, ©2020 De Gruyter, Berlin/Boston, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); b ref. 119, ©2018 American Chemical Society; c ref. 60, ©2015 American Chemical Society; d ref. 115, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); e ref. 58, ©2020 Springer Nature Limited, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); f ref. 64 ©2017 Springer Nature Limited. g ref. 70, ©2020 Springer Nature Limited; h ref. 121, ©2020 American Chemical Society; i ref. 71, ©2015 Springer Nature Limited; j ref. 72, ©2019 John Wiley & Sons, Inc. k ref. 68, ©2018 American Chemical Society. Further permissions related to the figures should be directed to the copyright holders.

    Figure  4.  The waveguide-integrated Si/2DM PDs with heterostructure configurations.

    a A high-speed G-Si PD with p-i-n doping distributions for both Si and graphene. b A Si-G plasmonic Schottky photodetector. c A MoTe2-G heterostructure PD. d A G-hBN-G heterostructure PD. Figures reproduced with permissions from: a ref. 122, ©2018 Springer Nature Limited, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); b ref. 99, ©2016 American Chemical Society; c ref. 90, ©2020 Springer Nature Limited; d ref. 123; ©2019 The Optical Society, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/). Further permissions related to the figures should be directed to the copyright holders.

    Figure  5.  Performance summary for the waveguide-integrated Si/2DM PDs.

    ■: photovoltaic (PV) effect, ●: photo-thermoelectric (PTE) effect, ▲: bolometric (BOL) effect, ♦: photoconductive (PC) effect, : Photo-gating (PG) effect, ◄: tunneling effects, ►: internal photon emission.(IPE) effect; blue: metal-graphene-metal (M-G-M); green: metal-TMDC-metal; black: metal-BP-metal; red: 2DM-heterostructure

    Figure  6.  The surface-illuminated Si/2DM PDs with metal-2DM-metal configuration.

    a A wide-band plasmonic enhanced graphene PD and the measured responsivity/photoconductive-gain. b A cavity-coupled graphene bolometer with Johnson noise read-out. Left: the 3D schematic. Right: the NEP and thermal relaxation time of hot electrons as a function of lattice temperature. c A metal-graphene+X-metal configuration PD, for which X is carbon nanotube. d A short-wave infrared graphene PD with a plasmonic enhanced structure on channel. e A ferroelectric polarization gating MoS2 photodetector with an operation wavelength extended to 1.55 μm. f A mid-infrared black-phosphorus PD with a high gain. g A mid-infrared black-phosphorus PD with an operation wavelength extended to 7.7 μm by applying a vertical electric field. Left: the 3D schematic. Right: the NEP and dark current at different wavelengths. h The specific detectivities of the mid-infrared black phosphorus PD and black-PAs-alloy PD as a function of wavelength. i A short-wave infrared tellurene PD. Figures reproduced with permissions from: a ref. 128, ©2018 Springer Nature Limited, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); b ref. 53, ©2018 Springer Nature Limited; c ref. 76, ©2015 Springer Nature Limited, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); d ref. 78, ©2017 American Chemical Society; e ref. 81. ©2015 John Wiley & Sons, Inc. f ref. 67, ©2016 American Chemical Society; g ref. 29, ©2017 Springer Nature Limited, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); h ref. 129, ©2017 American Chemical Society. i ref. 131, ©2019 American Chemical Society. Further permissions related to the figures should be directed to the copyright holders.

    Figure  7.  Surface-illuminated Si/2DM PDs with heterostructure configurations.

    a A MoS2-G-WSe2 PD. b A G-WSe2-G PD with the IPE effect.c A colloidal quantum dot-graphene (CQD-G) hybrid PD with tunneling layer. d A G-Si heterostructure position-sensitive PD operating at near-infrared wavelengths. e A G-Si PD operating at 1.55 μm. f A G/vertical-MoSe2/Si heterojunction PD. g A mid-infrared WS2-HfS2 heterostructure PD based on interlayer excitons. h A mid-infrared BP-MoS2 heterostructure PD. i A mid-infrared BP-InSe avalanche photodetector. Figures reproduced with permissions from: a ref. 86, ©2016 American Chemical Society; b ref. 100, ©2016 Springer Nature Limited, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); c ref. 103, ©2020 American Chemical Society; d ref. 135, ©2018 The Optical Society, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); e ref. 136, ©2017 American Chemical Society; f ref. 139, ©2016 John Wiley & Sons, Inc, under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/); g ref. 13 ©2020 Springer Nature Limited. h ref. 94, ©2018 Springer Nature Limited; i ref. 97, ©2019 Springer Nature Limited. Further permissions related to the figures should be directed to the copyright holders.

    Figure  8.  The image sensors based on Si/2DM PDs.

    a An image sensor array based on graphene-CMOS integration, covering ultraviolet, visible and infrared light. Left: the schematic of the graphene transfer process on wafer. Right: the schematic of the graphene/colloidal quantum dot PDs integrated with CMOS read-outs. b Concept of a focal stack light-field imaging system using graphene transparent PDs (inset). c An artificial neural network image-sensor based on a reconfigurable WSe2 PD array. Left: the schematic of the PD array. Right: the schematic of the single-element WSe2 PD. d A multispectral imaging system based on a black phosphorus PD. Figures reproduced with permissions from: a ref. 124, ©2017 Springer Nature Limited; b ref. 126, ©2020 Springer Nature Limited; c ref. 125, ©2020 Springer Nature Limited; d ref. 127, ©2014 American Chemical Society. Further permissions related to the figures should be directed to the copyright holders.

    Figure  9.  Development of Si/2DM PDs.

    The tasks, goals, and issues and challenges are summarized from the perspective of the material level, the device level, the circuit level, as well as the commercialization level.

    Table  1.   Summary of waveguide-integrated Si/2DM PDs

    Structure λ Mechanism Responsivity |Bias voltage| Bandwidtha Refs.
    M-G-M ~1.35 μm PV 0.2 A W−1 0.5 V 106
    BOL 0.67 A W−1
    M-G-M ~1.55 μm PV 7–50b mA W−1 0 V 3–110 GHz 107, 109, 110, 111
    57–108 mA W−1 1 V
    360 mA W−1 2.2 V
    M-G-M ~1.55 μm PTE 35–78 mA W−1 0 V 12–67 GHz 60, 112, 114, 115, 116, 117
    3.5–90 V W−1
    M-G-M ~1.55 μm BOL 90–500 mA W−1 0.3–0.4 V 40–110 GHz 58, 119
    M-G-M ~2 μm BOL 45–70 mA W−1 0.3 V 20 GHz 58
    M-G-M ~3.8 μm No stated 2.2 mA W−1 1 V 160
    M-MoTe2-M ~1.16 μm PV 4.8 mA W−1 0 V 200 MHz 64
    M-MoTe2-M ~1.55 μm PC 468 mA W−1 2 V 35 MHz 70
    M-PtSe2-M ~1.55 μm PC 12 mA W−1 8 V 35 GHz 121
    M-BP-M ~1.55 μm PV 135–657 mA W−1 0.4–2 V 3 GHz 71
    M-BP-M ~1.55 μm PC 6.25 A W−1 0.7 V 150 MHz 161
    M-BP-M 3.68 μm PG 0.7–23 A W−1 1 V 68
    4 μm 0.5–2 A W−1
    M-BP-M ~3.825 μm PG 0.1–11.31 A W−1 0.5 V 550 Hz 69
    M-BP-M 2 μm PV 0.026–0.307 A W−1 0.4 V 0.5–1.33 GHz 72
    MoTe2-G ~1.31 μm PV; PC 23–400 mA W−1 3 V 0.5 GHz 89
    MoTe2-G 1.26–1.34 μm PV; PC ~ 7–150 mA W−1 0.6 V 12–46 GHz 90
    G-hBN-G ~1.55 μm DT; F-N tunneling 240 mA W−1 10 V 28 GHz 123
    G-Si 2.75 μm IPE 0.13 A W−1 1.5 V 98
    Au-G-Si ~1.55 μm IPE 85 mA W−1 1 V 99
    G-Si ~1.55 μm IPE 11 mA W−1 0 V > 50 GHz 122
    PV photovoltaic, IPE internal photon emission, DT direct tunneling, F-N tunneling, Fowler-Nordheim (F-N) tunneling, PC photoconductive, PG Photo-gating, BOLbolometric, PTE photo-thermoelectric.
    aThe measured bandwidths may be setup limited.
    bIn ref. 107, the graphene has two or three layers.
    下载: 导出CSV

    Table  2.   Performances of surface-illuminated Si/2DM PDs at the NIR and MIR range.

    Configuration Year Structure λ(μm) Mechanism Responsivity@input power (λ) |Bias| Bandwidth/Response timea D*(Jones)@Tb Refs.
    Metal-2DM-metal 2009 M-G-M ~1.55 PV 0.5 mA W−1 - > 40 GHz - 59
    2010 M-G-M ~1.55 PV 6.1 mA W−1@0.4 V - 16 GHz ~1.08 × 105c 141
    2018 M-G-M 0.8-20 PV
    PC
    0.6-0.075 A W−1@2.5-50 μW (0.8 μm) 0.02 V 50 GHz (0.8 μm) ~1.5-15 × 108(3-20 μm)* 128
    11.5 A W−1@2.5 μW (20 μm)
    2013 M-GQDs-M 0.532-10.3 PG 0.2-1.25 A W−1(0.53 μm) 0.02 V - - 142
    2012 M-G (bilayer)-M 0.658-10.6 BOL 2 × 105 V W−1(10.6 μm) - > 1 GHz (1.03 μm) ~3.03 × 1010(10.6 μm)@5 K* 51d
    2018 M-G-M 1.531 BOL - - 30 ps@5 K (read out-limited) ~3.5 × 107@5 K 53
    2020 M-G-M 3.4-12 BOL 1.4-5.1 mA W−1 0.5 V 47 MHz ~7.22 × 104-2.65 × 105* 162
    2017 M-BP-M 2.5-3.7 PV; PC 160 mA W−1@25 μW 22 mA W−1@785 μW 0.2 V > 0.88 MHz - 163
    2017 M-bPAs-M 2-8 PV 180-20.3 mA W−1@0.07-44.3 μW (3.66 μm) 0 V ~0.65 kHz (4.03 μm)~11.4 kHz (1.55 μm) > 1.06 × 108(2-8 μm) 130
    2017 M-BP-M 3.4 PC 518 mA W−1@40 μW, 77 K 1.2 V > > 10 kHz (1.3 GHz estimated) ~2.67 × 1010* 29
    5 30 mA W−1@50 μW, 77 K ~2.29 × 107*
    7.7 2.2 mA W−1@100 μW, 77 K ~1.19 × 106*
    2017 M-BP-M M-bPAs-M 1-4.6 PC ~11 A W−1@RT (3.6 μm) 0.5 V 117 kHz (0.98 μm) 1 × 1010-6 × 1010@1V 129
    2016 M-BP-M 3.39 PG 82 A W−1@1.6 nW 0.9 A W−1@30 μW 0.5 V 1.1-2.2 kHz ~1.2 × 108* 67
    2018 M-BP-M 0.514-1.8 PG 5 × 103-6 × 104A W−1@1.6 W cm−2, 70 K 2 V ~35 kHz (0.632 μm) ~2.1 × 1010(0.632 μm) 143
    2018 M-BP-M 1.55 PG 230 A W−1@11 nW 1 V ~73 Hz - 144
    2018 M-bAsP-M 3.4 PG
    PTE
    PV
    190 mA W−1 1 V - ~2.86 × 107* 164
    5 16 mA W−1 ~2.16 × 106*
    7.7 1.2 mA W−1 ~1.86 × 105*
    2018 M-Te-M 1.4-2.4 PG 27 A W−1@78 K (1.7 μm)16 A W−1@297 K (1.7 μm) 5 V - 2.9 × 109@RT 2.6 × 1011@78 K 33
    2019 M-Te-M 0.52 PG 383 A W−1@1.6 nW 1 V ~1 kHz@0.95 nW - 131
    1.55 PV ~19.2 mA W−1@0~30 μW 37 MHz@39-250 μW
    3.39 PG ~18.9 mA W−1@0-30 μW 35 Hz@30 μW
    2019 M-ReS2-M 0.8−1.2 BOL 380-350 A W−1 0.1 V ~117 Hz ~1.3 × 1010 165
    2020 M-PtSe2-M 0.765-1.55 PC
    PV
    0.19 mA W−1(1.55 μm) 5 V 4.5-17 GHz ~1.2 × 107(1.55 μm)* 35
    Metal-2DM+X-metal 2014 M-G+Ta2O5+G-M 1.2 PG 20 A W−1 1 V - - 166
    2.4 0.45 A W−1
    2015 M-G+CNT-M 0.405-1.55 PG 20 A W−1@0.3 μW (1.55 μm) 0.5 V ~3.5 kHz (0.65 μm) - 76
    2017 M-G+SiQDs-M 0.375-1.87 PG 1.2-22 × 108 A W−1@0.2 μW cm−2 1 V sub-Hz scale ~1013@RT 75
    2.5-3.9 0.22-44.9 A W−1@375 mW cm−2 ~105@77 K
    2017 M-BP+G-M 1.55 PG 1300 A W−1@11 nW 210 A W−1@211 nW 1 V ~88 Hz - 46
    2017 M-Au+G+Si-M ~1.55 PG 83 A W−1@0.3 μW 10 V ~580 kHz ~108 78
    2DM-heterostructure 2016 G-WSe2-G ~1.55 IPE 0.12 mA W−1 0.6 V - - 100
    2016 WSe2-G-MoS2 0.4-2.4 PV 0.1-1 A W−1(1.3-2.4 μm) 1 V ~7 kHz (0.53-0.94 μm) 2 × 109-2 × 1010 86
    2018 G-GaSe-G 0.73 IPE 10 mA W−1 1 V 3.9 Hz ~5.76 × 107c 167
    1.33 3 mA W−1 2.2 Hz ~1.73 × 107c
    1.55 0.05 mA W−1 1.5 Hz ~2.9 × 105c
    2019 G-hBN-G ~0.532 IPE
    F-N tunneling
    13 μA W−1 Few volts - 5 × 1014 101
    ~1.55 70 nA W−1 -
    2017 G-Si ~1.55 IPE ~20 mA W−1 10 V - 5.1 × 107 136
    2018 G-Si 2 IPE 0.16 mA W−1 0 V - 2.56 × 107 138
    2019 G nanowalls-Au-Si 1.55 IPE 21 mA W−1@0.19 μW 1 V ~0.95 kHz 1.6 × 109 168
    3.5 0.44 μA W−1 0 V - -
    2020 CQDs+G-TiO2-Ti 1.625 PG 70 A W−1 0.5 V 1.1 kHz ~8.1 × 107*e 103
    2020 WS2-HfS2 4.3-10 ILE ~92.4-3510 A W−1@0.5 nW 1.5 V 100-200 Hz 7 × 1012(7 μm) 13
    2016 BP-MoS2 ~0.532 PV
    PG
    22.3 A W−1@1 nW 3 V - 3.1 × 1011 92
    1.55 153.4 mA W1@1 nW ~23.3 kHz 2.13 × 109
    2017 WS2-BP-MoS2 ~0.532 PV
    PG
    6.32 A W−1@13.5 nW 3 V - 1.01 × 109 93
    1.55 1.12 A W−1@13.5 nW 1.74 × 108
    2017 BP-MoS2 2-8 PV 115.4-216.1 mA W−1(2.36-4.29 μm) 0 V - > 4.9 × 109(3-5 μm) 130
    2018 BP-MoS2 1.6-4 PV 0.1-0.9 A W−1 0 V ~100 kHz 1.1 × 1010(3.8 μm) 94
    2020 BP-MoS2 2-4 PV 0.11 A W−1(3 μm) 0 V ~0.1-1 GHz 1.7 × 109(3.0 μm) 95
    GQDs graphene quantum dot-like arrays, CQDs colloidal quantum dots, SiQDs Si quantum dots, PV photovoltaic, IPE internal photon emission, DT direct tunneling, F-N tunneling Fowler-Nordheim tunneling, PC photoconductive, PG photo-gating, BOL bolometric, PTE photo-thermoelectric, ILE interlayer exciton, RT room temperature.
    aThe measured values are counted.
    bThe data marked with asterisk (*) are extracted by using the provided NEP and the device active region area.
    cExtracted by the measured data considering the shot noise and the thermal noise.
    dThe responsivity and the related specific detectivity D* may be overestimated because the optical absorption was ignored here.
    eExtracted from the measured value NEP = 1.8 × 10−11 W at the modulation frequency of 30 Hz with a device active area of ~210 μm2.
    下载: 导出CSV
  • [1] Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). doi: 10.1039/C4NR01600A
    [2] Liu, J. et al. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020). http://www.nature.com/articles/s41563-020-0715-7?utm_source=other&utm_medium=other&utm_content=null
    [3] Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020). doi: 10.1038/s41699-020-00162-4
    [4] Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020). doi: 10.1038/s41467-020-16640-8
    [5] Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). doi: 10.1038/nnano.2014.215
    [6] Long, M. S. et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019). doi: 10.1002/adfm.201803807
    [7] Chen, X. Q. et al. Graphene hybrid structures for integrated and flexible optoelectronics. Adv. Mater. 32, 1902039 (2019). doi: 10.1002/adma.201902039
    [8] Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012). doi: 10.1038/nmat3417
    [9] Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). doi: 10.1038/s41586-019-1573-9
    [10] Li, J. et al. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics 9, 2295–2314 (2020). doi: 10.1515/nanoph-2020-0093
    [11] Cao, G. Q. et al. Multicolor broadband and fast photodetector based on InGaAs–Insulator–graphene hybrid heterostructure. Adv. Electron. Mater. 6, 1901007 (2020). doi: 10.1002/aelm.201901007
    [12] Deng, S. K. et al. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). doi: 10.1016/j.nantod.2018.07.001
    [13] Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). doi: 10.1038/s41565-020-0717-2
    [14] Rahim, A. et al. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE 106, 2313–2330 (2018). doi: 10.1109/JPROC.2018.2878686
    [15] Bogaerts, W. & Chrostowski, L. Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev. 12, 1700237 (2018). doi: 10.1002/lpor.201700237
    [16] Soref, R. Group IV photonics: enabling 2 µm communications. Nat. Photonics 9, 358–359 (2015). doi: 10.1038/nphoton.2015.87
    [17] Sun, J. et al. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013). doi: 10.1038/nature11727
    [18] Lavchiev, V. M. & Jakoby, B. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing. IEEE J. Sel. Top. Quantum Electron. 23, 8200612 (2017). doi: 10.1109/JSTQE.2016.2619330
    [19] Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93
    [20] Wang, J. W. et al. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020). doi: 10.1038/s41566-019-0532-1
    [21] Rieke, G. H. Detection of Light: From the Ultraviolet to the Submillimeter. 2nd edn. (Cambridge University Press, Cambridge, 2003).
    [22] Huang, Z. H. et al. Microstructured silicon photodetector. Appl. Phys. Lett. 89, 033506 (2006). doi: 10.1063/1.2227629
    [23] Chen, H. T. et al. 100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Lightwave Technol. 35, 722–726 (2017). doi: 10.1109/JLT.2016.2593942
    [24] Roelkens, G. et al. III-V-on-silicon photonic devices for optical communication and sensing. Photonics 2, 969–1004 (2015). doi: 10.3390/photonics2030969
    [25] Capper, P. & Garland, J. W. Mercury Cadmium Telluride: Growth, Properties and Applications. (Wiley, Hoboken, 2011).
    [26] Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003
    [27] Liu, Y. et al. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018). doi: 10.1039/C8CS00318A
    [28] Xiong, Z. & Tang, J. Y. Two-dimensional materials and hybrid systems for photodetection. in Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures. (eds. Yang, E. H. et al. ) 325–349 (Elsevier, 2020).
    [29] Chen, X. L. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017). doi: 10.1038/s41467-017-01978-3
    [30] Bonaccorso, F. et al. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010). doi: 10.1038/nphoton.2010.186
    [31] Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282
    [32] Dong, B. W. et al. Black phosphorus based photodetectors. in Fundamentals and Applications of Phosphorus Nanomaterials. (ed. Ji, H. F. ) Ch. 3 (American Chemical Society, 2019).
    [33] Amani, M. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018). doi: 10.1021/acsnano.8b03424
    [34] Yu, T. T. et al. Two-dimensional GeP-based broad-band optical switches and photodetectors. Adv. Optical Mater. 8, 1901490 (2020). doi: 10.1002/adom.201901490
    [35] Wang, Y. et al. High-speed infrared two-dimensional platinum diselenide photodetectors. Appl. Phys. Lett. 116, 211101 (2020). doi: 10.1063/5.0010034
    [36] Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015). doi: 10.1039/C5CS00106D
    [37] Sze, S. M. Physics of Semiconductor Devices. (John Wiley and Sons, New York, 1981).
    [38] Di Bartolomeo, A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016). doi: 10.1016/j.physrep.2015.10.003
    [39] Scales, C. & Berini, P. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46, 633–643 (2010). doi: 10.1109/JQE.2010.2046720
    [40] Miao, J. S. & Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. https://doi.org/10.1007/s12274-020-3001-8 (2020).
    [41] Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016). doi: 10.1038/nphys3620
    [42] Vu, Q. A. et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett. 17, 453–459 (2017). doi: 10.1021/acs.nanolett.6b04449
    [43] Furchi, M. M. et al. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14, 6165–6170 (2014). doi: 10.1021/nl502339q
    [44] Zhu, W. J. et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014). doi: 10.1038/ncomms4087
    [45] Guo, X. T. et al. High-performance graphene photodetector using interfacial gating. Optica 3, 1066–1070 (2016). doi: 10.1364/OPTICA.3.001066
    [46] Liu, Y. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 9, 36137–36145 (2017). doi: 10.1021/acsami.7b09889
    [47] Malic, E. et al. Carrier dynamics in graphene: ultrafast many-particle phenomena. Ann. der Phys. 529, 1700038 (2017). doi: 10.1002/andp.201700038
    [48] Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014). doi: 10.1103/PhysRevLett.112.247401
    [49] Low, T. et al. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014). doi: 10.1103/PhysRevB.90.081408
    [50] Du, X. et al. Graphene-based bolometers. Graphene 2D Mater. 1, 1–22 (2014).
    [51] Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012). doi: 10.1038/nnano.2012.88
    [52] Jago, R., Malic, E. & Wendler, F. Microscopic origin of the bolometric effect in graphene. Phys. Rev. B 99, 035419 (2019). doi: 10.1103/PhysRevB.99.035419
    [53] Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018). doi: 10.1038/s41565-018-0169-0
    [54] Blaikie, A., Miller, D. & Alemán, B. J. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat. Commun. 10, 4726 (2019). doi: 10.1038/s41467-019-12562-2
    [55] Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017). doi: 10.1103/PhysRevApplied.8.024022
    [56] Vora, H. et al. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012). doi: 10.1063/1.3703117
    [57] Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). doi: 10.1126/science.1211384
    [58] Guo, J. S. et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light. : Sci. Appl. 9, 29 (2020). doi: 10.1038/s41377-020-0263-6
    [59] Xia, F. N. et al. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). doi: 10.1038/nnano.2009.292
    [60] Shiue, R. J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015). doi: 10.1021/acs.nanolett.5b02368
    [61] Tielrooij, K. J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015). doi: 10.1038/nnano.2015.54
    [62] Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene-metal interfaces. J. Phys. 27, 164207 (2015).
    [63] Freitag, M. et al. Photoconductivity of biased graphene. Nat. Photonics 7, 53–59 (2013). doi: 10.1038/nphoton.2012.314
    [64] Bie, Y. Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017). doi: 10.1038/nnano.2017.209
    [65] Buscema, M. et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014). doi: 10.1038/ncomms5651
    [66] Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). doi: 10.1038/nnano.2013.100
    [67] Guo, Q. S. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016). doi: 10.1021/acs.nanolett.6b01977
    [68] Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13, 913–921 (2019). doi: 10.1021/acsnano.8b08758
    [69] Ma, Y. M. et al. High-responsivity mid-infrared black phosphorus slow light waveguide photodetector. Adv. Optical Mater. 8, 2000337 (2020). doi: 10.1002/adom.202000337
    [70] Maiti, R. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics 14, 578–584 (2020). doi: 10.1038/s41566-020-0647-4
    [71] Youngblood, N. et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015). doi: 10.1038/nphoton.2015.23
    [72] Yin, Y. L. et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev. 13, 1900032 (2019). doi: 10.1002/lpor.201900032
    [73] Hong, T. et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6, 8978–8983 (2014). doi: 10.1039/C4NR02164A
    [74] Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012). doi: 10.1038/nnano.2012.60
    [75] Ni, Z. Y. et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano 11, 9854–9862 (2017). doi: 10.1021/acsnano.7b03569
    [76] Liu, Y. D. et al. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 6, 8589 (2015). doi: 10.1038/ncomms9589
    [77] Shin, G. H. et al. Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals heterojunction. Nano Lett. 20, 5741–5748 (2020). doi: 10.1021/acs.nanolett.0c01460
    [78] Chen, Z. F. et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 11, 430–437 (2017). doi: 10.1021/acsnano.6b06172
    [79] Liu, J. J. et al. Silicon-graphene conductive photodetector with ultra-high responsivity. Sci. Rep. 7, 40904 (2017). doi: 10.1038/srep40904
    [80] Venuthurumilli, P. K., Ye, P. D. & Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12, 4861–4867 (2018). doi: 10.1021/acsnano.8b01660
    [81] Wang, X. D. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27, 6575–6581 (2015). doi: 10.1002/adma.201503340
    [82] Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013). doi: 10.1038/nnano.2013.219
    [83] Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). doi: 10.1126/science.1235547
    [84] Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016). doi: 10.1038/nnano.2015.227
    [85] Heo, J. et al. Reconfigurable van der Waals heterostructured devices with metal–insulator transition. Nano Lett. 16, 6746–6754 (2016). doi: 10.1021/acs.nanolett.6b02199
    [86] Long, M. S. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016). doi: 10.1021/acs.nanolett.5b04538
    [87] Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). doi: 10.1038/nnano.2014.150
    [88] Yang, S. et al. Monolithic interface contact engineering to boost optoelectronic performances of 2D semiconductor photovoltaic heterojunctions. Nano Lett. 20, 2443–2451 (2020). doi: 10.1021/acs.nanolett.9b05162
    [89] Ma, P. et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5, 1846–1852 (2018). doi: 10.1021/acsphotonics.8b00068
    [90] Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020). doi: 10.1038/s41565-019-0602-z
    [91] Lee, J. et al. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional devices. Nano Lett. 20, 2370–2377 (2020). doi: 10.1021/acs.nanolett.9b04926
    [92] Ye, L. et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692–699 (2016). doi: 10.1021/acsphotonics.6b00079
    [93] Li, H., Ye, L. & Xu, J. B. High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure. ACS Photonics 4, 823–829 (2017). doi: 10.1021/acsphotonics.6b00778
    [94] Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12, 601–607 (2018). doi: 10.1038/s41566-018-0239-8
    [95] Yan, W. et al. Spectrally selective mid-wave infrared detection using fabry-pérot cavity enhanced black phosphorus 2D photodiodes. ACS Nano 14, 13645–13651 (2020). doi: 10.1021/acsnano.0c05751
    [96] Yu, W. J. et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 7, 13278 (2016). doi: 10.1038/ncomms13278
    [97] Gao, A. Y. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 14, 217–222 (2019). doi: 10.1038/s41565-018-0348-z
    [98] Wang, X. M. et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888–891 (2013). doi: 10.1038/nphoton.2013.241
    [99] Goykhman, I. et al. On-chip integrated, silicon–graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 16, 3005–3013 (2016). doi: 10.1021/acs.nanolett.5b05216
    [100] Massicotte, M. et al. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 7, 12174 (2016). doi: 10.1038/ncomms12174
    [101] Li, L. F. et al. Plasmon excited ultrahot carriers and negative differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett. 19, 3295–3304 (2019). doi: 10.1021/acs.nanolett.9b00908
    [102] Jeong, H. et al. Metal–insulator–semiconductor diode consisting of two-dimensional nanomaterials. Nano Lett. 16, 1858–1862 (2016). doi: 10.1021/acs.nanolett.5b04936
    [103] De Fazio, D. et al. Graphene-quantum dots hybrid photodetectors with low dark-current readout. ACS Nano 14, 11897–11905 (2020). doi: 10.1021/acsnano.0c04848
    [104] Koester, S. J. & Li, M. Waveguide-coupled graphene optoelectronics. IEEE J. Sel. Top. Quantum Electron. 20, 6000211 (2014). doi: 10.1109/JSTQE.2013.2272316
    [105] Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018). doi: 10.1038/s41578-018-0040-9
    [106] Ma, Z. Z. et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 7, 932–940 (2020). doi: 10.1021/acsphotonics.9b01452
    [107] Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7, 892–896 (2013). doi: 10.1038/nphoton.2013.240
    [108] Ding, Y. H. et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 9, 317–325 (2020). doi: 10.1515/nanoph-2019-0167
    [109] Gan, X. T. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013). doi: 10.1038/nphoton.2013.253
    [110] Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 1, 781–784 (2014). doi: 10.1021/ph5001605
    [111] Gao, Y. et al. High-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors. Opt. Lett. 43, 1399–1402 (2018). doi: 10.1364/OL.43.001399
    [112] Schuler, S. et al. Controlled generation of a p–n junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107–7112 (2016). doi: 10.1021/acs.nanolett.6b03374
    [113] Schuler, S. et al. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5, 4758–4763 (2018). doi: 10.1021/acsphotonics.8b01128
    [114] Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19, 7632–7644 (2019). doi: 10.1021/acs.nanolett.9b02238
    [115] Schuler, S. et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Preprint at https://arxiv.org/abs/2007.03044 (2020).
    [116] Marconi, S. et al. Photo thermal effect graphene detector featuring 105 Gbit s−1 NRZ and 120 Gbit s−1 PAM4 direct detection. Nat. Commun. 12, 806 (2021). doi: 10.1038/s41467-021-21137-z
    [117] Mišeikis, V. et al. Ultrafast, zero-bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides. ACS Nano 14, 11190–11204 (2020). doi: 10.1021/acsnano.0c02738
    [118] Schall, D. et al. Graphene photodetectors with a bandwidth > 76 GHz fabricated in a 6'' wafer process line. J. Phys. D: Appl. Phys. 50, 124004 (2017). doi: 10.1088/1361-6463/aa5c67
    [119] Ma, P. et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6, 154–161 (2019). doi: 10.1021/acsphotonics.8b01234
    [120] Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011). doi: 10.1021/nl2011388
    [121] Wang, Y. et al. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics 7, 2643–2649 (2020). doi: 10.1021/acsphotonics.0c01233
    [122] Li, T. T. et al. Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode. npj 2D Mater. Appl. 2, 36 (2018). doi: 10.1038/s41699-018-0080-4
    [123] Gao, Y. et al. High-speed van der Waals heterostructure tunneling photodiodes integrated on silicon nitride waveguides. Optica 6, 514–517 (2019). doi: 10.1364/OPTICA.6.000514
    [124] Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017). doi: 10.1038/nphoton.2017.75
    [125] Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). doi: 10.1038/s41586-020-2038-x
    [126] Lien, M. B. et al. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 14, 143–148 (2020). doi: 10.1038/s41566-019-0567-3
    [127] Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014). doi: 10.1021/nl502928y
    [128] Cakmakyapan, S. et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light. : Sci. Appl. 7, 20 (2018). doi: 10.1038/s41377-018-0020-2
    [129] Amani, M. et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). doi: 10.1021/acsnano.7b07028
    [130] Long, M. S. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017). doi: 10.1126/sciadv.1700589
    [131] Shen, C. F. et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 14, 303–310 (2020). doi: 10.1021/acsnano.9b04507
    [132] Chen, C. C. et al. Graphene-silicon schottky diodes. Nano Lett. 11, 5097 (2011). doi: 10.1021/nl203288r
    [133] Selvi, H. et al. Graphene–silicon-on-insulator (GSOI) Schottky diode photodetectors. Nanoscale 10, 18926–18935 (2018). doi: 10.1039/C8NR05285A
    [134] Chang, K. E. et al. Gate-controlled graphene-silicon schottky junction photodetector. Small 14, 1801182 (2018). doi: 10.1002/smll.201801182
    [135] Wang, W. H. et al. High-performance position-sensitive detector based on graphene–silicon heterojunction. Optica 5, 27–31 (2018). doi: 10.1364/OPTICA.5.000027
    [136] Casalino, M. et al. Vertically illuminated, resonant cavity enhanced, graphene–silicon schottky photodetectors. ACS Nano 11, 10955–10963 (2017). doi: 10.1021/acsnano.7b04792
    [137] Selvi, H. et al. Towards substrate engineering of graphene–silicon Schottky diode photodetectors. Nanoscale 10, 3399–3409 (2018). doi: 10.1039/C7NR09591K
    [138] Casalino, M. et al. Free-space schottky graphene/silicon photodetectors operating at 2 μm. ACS Photonics 5, 4577–4585 (2018). doi: 10.1021/acsphotonics.8b01037
    [139] Mao, J. et al. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 3, 1600018 (2016). doi: 10.1002/advs.201600018
    [140] Jiang, W. et al. A versatile photodetector assisted by photovoltaic and bolometric effects. Light. : Sci. Appl. 9, 160 (2020). doi: 10.1038/s41377-020-00396-3
    [141] Mueller, T., Xia, F. N. & Avouris, R. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010). doi: 10.1038/nphoton.2010.40
    [142] Zhang, Y. Z. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). doi: 10.1038/ncomms2830
    [143] Xiong, X. et al. High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electron Device Lett. 39, 127–130 (2018). doi: 10.1109/LED.2017.2779877
    [144] Liu, Y. et al. Highly responsive broadband black phosphorus photodetectors. Chin. Opt. Lett. 16, 020002 (2018). doi: 10.3788/COL201816.020002
    [145] Verguts, K. et al. Controlling water intercalation is key to a direct graphene transfer. ACS Appl. Mater. Interfaces 9, 37484–37492 (2017). doi: 10.1021/acsami.7b12573
    [146] Wang, B. et al. Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 10, 1404–1410 (2016). doi: 10.1021/acsnano.5b06842
    [147] Chen, M. G. et al. Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017). doi: 10.1039/C7MH00485K
    [148] Moon, J. Y. et al. Layer-engineered large-area exfoliation of graphene. Sci. Adv. 6, eabc6601 (2020). doi: 10.1126/sciadv.abc6601
    [149] Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018). doi: 10.1039/C7CS00828G
    [150] Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018). doi: 10.1038/s41467-018-07643-7
    [151] Rogalski, A. Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv. Opt. Photonics 11, 314–379 (2019). doi: 10.1364/AOP.11.000314
    [152] Lin, H. T. et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7, 393–420 (2017). doi: 10.1515/nanoph-2017-0085
    [153] Seeds, A. J. et al. Terahertz photonics for wireless communications. J. Lightwave Technol. 33, 579–587 (2015). doi: 10.1109/JLT.2014.2355137
    [154] Yan, S. Q. et al. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics 9, 1877–1900 (2020). doi: 10.1515/nanoph-2020-0074
    [155] Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42
    [156] Yuan, X. et al. Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe. Nano Res. 8, 3332–3341 (2015). doi: 10.1007/s12274-015-0833-8
    [157] Giambra, M. A. et al. Wafer-scale integration of graphene-based photonic devices. ACS Nano 15, 3171–3187 (2021). doi: 10.1021/acsnano.0c09758
    [158] Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). doi: 10.1038/s41586-019-1013-x
    [159] Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019). doi: 10.1038/s41563-019-0359-7
    [160] Qu, Z. et al. Waveguide integrated graphene mid-infrared photodetector. In Proceedings of SPIE 10537, Silicon Photonics XIII. (SPIE, 2018). 105371N.
    [161] Chen, C. et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 17, 985–991 (2017). doi: 10.1021/acs.nanolett.6b04332
    [162] Yuan, S. F. et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range. ACS Photonics 5, 1206–1215 (2020). doi: 10.1021/acsphotonics.0c00028
    [163] Xu, M. et al. Black phosphorus mid-infrared photodetectors. Appl. Phys. B 123, 130 (2017). doi: 10.1007/s00340-017-6698-7
    [164] Yuan, S. F. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18, 3172–3179 (2018). doi: 10.1021/acs.nanolett.8b00835
    [165] Xiang, D. et al. Anomalous broadband spectrum photodetection in 2D rhenium disulfide transistor. Adv. Optical Mater. 7, 1901115 (2019). doi: 10.1002/adom.201901115
    [166] Liu, C. H. et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014). doi: 10.1038/nnano.2014.31
    [167] Kim, W. et al. Photoresponse of graphene-gated graphene-GaSe heterojunction devices. ACS Appl. Nano Mater. 1, 3895–3902 (2018). doi: 10.1021/acsanm.8b00684
    [168] Liu, X. Z. et al. Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction. ACS Appl. Mater. Interfaces 11, 17663–17669 (2019). doi: 10.1021/acsami.9b03329
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  177
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 修回日期:  2021-04-21
  • 录用日期:  2021-05-06
  • 发布日期:  2021-06-09

目录

    /

    返回文章
    返回