Investigation of Vacuum Ultraviolet Photoionization of Methylcyclohexane in Energy Region of 9$ - $15.5 eV
doi: 10.1063/1674-0068/cjcp1905095
-
摘要: 利用具有同步辐射源的反射式飞行时间质谱仪, 研究甲基环己烷的真空紫外光电离和光解离.观测到母体离子C$ _7 $H$ _{14} $$ ^+ $和碎片离子C$ _7 $H$ _{13} $$ ^+ $, C$ _6 $H$ _{11} $$ ^+ $, C$ _6 $H$ _{10} $$ ^+ $, C$ _5 $H$ _{10} $$ ^+ $, C$ _5 $H$ _{9} $$ ^+ $, C$ _4 $H$ _{8}^+ $, C$ _4 $H$ _{7} $$ ^+ $和C$ _3 $H$ _{5} $$ ^+ $的光电离效率曲线.测定甲基环己烷的电离能为9.80$ \pm $ 0.03 eV, 通过光电离效率曲线确定其碎片离子的出现势.在B3LYP/6-31G(d)水平上对过渡态、中间体和产物离子的优化结构进行表征, 并使用G3B3方法计算其能量.提出主要碎片离子的形成通道.分子内氢迁移和碳开环是甲基环己烷裂解途径中最重要的过程.
-
Table Ⅰ. Theoretical and experimental values of ionization energy and appearance energies for main fragment ions from the dissociative photoionization of MCH.
-
[1] S. Dooley, J. Heyne, S. H. Won, P. Dievart, Y. G. Ju, and F. L. Dryer, Energy Fuels 28, 7649 (2014). doi: 10.1021/ef5008962 [2] N. Hansen, T. Kasper, S. J. Klippenstein, P. R. Westmoreland, M. E. Law, C. A. Taatjes, K. Kohse-Höinghaus, J. Wang, and T. A. Cool, J. Phys. Chem. A 111, 4081 (2007). doi: 10.1021/jp0683317 [3] E. J. Silke, W. J. Pitz, C. K. Westbrook, and M. Ribaucour, J. Phys. Chem. A 111, 3761 (2007). doi: 10.1021/jp067592d [4] A. Agosta, M. S. Dissertation, Philadelphia: Drexel University, (2002). [5] J. T. Farrell, N. P. Cernansky, F. L. Dryer, C. A. Hergart, C. K. Law, R. M. McDavid, C. J. Mueller, A. K. Patel, and H. Pitsch, SAE Technical Papers 1, 201 (2007). [6] W. J. Pitz, C. V. Naik, T. Ní Mhaoldúin, C. K. Westbrook, H. J. Curran, J. P. Orme, and J. M. Simmie, Proc. Combust. Inst. 31, 267 (2007). doi: 10.1016/j.proci.2006.08.041 [7] F. Buda, B. Heyberger, R. Fournet, P. A. Glaude, V. Warth, and F. Battin-Leclerc, Energy Fuels 20, 1450 (2006). [8] Z. D. Wang, L. L. Ye, W. H. Yuan, L. D. Zhang, Y. Z. Wang, Z. J. Cheng, F. Zhang, and F. Qi, Combust. Flame 161, 84 (2014). doi: 10.1016/j.combustflame.2013.08.011 [9] A. T. Holley, Y. Dong, M. G. Andac, and F. N. Egolfopoulos, Proc. Comb. Inst. 144, 448 (2006). https://www.sciencedirect.com/science/article/abs/pii/S0010218005002142 [10] T. Bieleveld, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, U. Niemann, and K. Seshadri, Proc. Combust. Inst. 32, 493 (2009). doi: 10.1016/j.proci.2008.06.214 [11] C. V. Naik, W. J. Pitz, M. Sjöberg, J. E. Dec, J. Orme, H. J. Curran, J. M. Simmie, and C. K. Westbrook, SAE. Trans. 114, 1381 (2005). https://www.sciencedirect.com/science/article/abs/pii/S0010218016301146 [12] J. P. Orme, H. J. Curran, and J. M. Simmie, J. Phys. Chem. A 110, 114 (2006). doi: 10.1021/jp0543678 [13] J. M. Simmie, Prog. Energy Combust. Sci. 29, 599 (2003). https://www.sciencedirect.com/science/article/pii/S0360128503000601 [14] S. Zeppieri, K. Brezinsky, and I. Glassman, Combust. Flame 108, 266 (1997). doi: 10.1016/S0010-2180(96)00125-3 [15] M. K. Liszka and K. Brezinsky, Fuel 237, 245 (2019). doi: 10.1016/j.fuel.2018.09.095 [16] T. Bissoonauth, Z. D. Wang, S. Y. Mohamed, J. Y. Wang, B. J. Chen, A. Rodriguez, O. Frottier, X. Y. Zhang, Y. Zhang, C. C. Cao, J. Z. Yang, O. Herbinet, F. Battin-Leclerc, and S. M. Sarathy, Proc. Combust. Inst. 37, 409 (2019). doi: 10.1016/j.proci.2018.05.086 [17] B. Rotavera and E. L. Petersen, Proc. Combust. Inst. 34, 435 (2013). doi: 10.1016/j.proci.2012.06.042 [18] Z. Hong, K. Y. Lam, D. F. Davidson, and R. K. Hanson, Combust. Flame 158, 1456 (2011). doi: 10.1016/j.combustflame.2010.12.019 [19] R. F. Pottie, A. G. Harrison, and F. P. Lossing, J. Am. Chem. Soc. 83, 3204 (1961). doi: 10.1021/ja01476a009 [20] M. Q. Cao, J. Chen, W. Z. Fang, Y. Q. Li, S. L. Ge, X. B. Shan, F. Y. Liu, Y. J. Zhao, Z. Y. Wang, and L. S. Sheng, Eur. J. Mass Spectrom. 20, 419 (2014). doi: 10.1255/ejms.1304 [21] G. B. Chu, J. Chen, F. Y. Liu, X. B. Shan, J. G. Han, and L. S. Sheng, Chem. Phys. 416, 26 (2013). doi: 10.1016/j.chemphys.2013.02.027 [22] F. Y. Liu, C. X. Li, G. H. Wu, H. Gao, F. Qi, L. S. Sheng, Y. W. Zhang, S. Q. Yu, S. H. Chien, and W. K. Li, J. Phys. Chem. A 105, 2973 (2001). doi: 10.1021/jp0027546 [23] Y. L. Song, J. Chen, M. M. Ding, B. Wei, M. Q. Cao, X. B. Shan, Y. J. Zhao, C. Q. Huang, L. S. Sheng, and F. Y. Liu, J. Mol. Struct. 1094, 83 (2015). doi: 10.1016/j.molstruc.2015.04.009 [24] Y. Xie, L. L. Cao, Q. Zhang, J. Chen, G. B. Chu, Y. J. Zhao, X. B. Shan, F. Y. Liu, and L. S. Sheng, Chin. J. Chem. Phys. 25, 379 (2012). doi: 10.1088/1674-0068/25/04/379-388 [25] Z. H. Li, Y. P. Yu, X. Lin, J. Chen, H. Zhang, Y. B. Li, H. H. Wang, Q. H. Meng, R. R. Sun, X. B Shan, F. Y. Liu, and L. S. Sheng, Chin. J. Chem. Phys. 31, 619 (2018). doi: 10.1063/1674-0068/31/cjcp1804084 [26] M. Wang, J. Chen, W. F. Fei, Z. H. Li, Y. P. Yu, X. Lin, X. B. Shan, F. Y. Liu, and L. S. Sheng, Chin. J. Chem. Phys. 31, 379 (2018). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113880 [27] J. Chen, M. Q. Cao, B. Wei, M. M. Ding, X. B. Shan, F. Y. Liu, and L. S. Sheng, J. Mass Spectrom. 51, 169 (2016). doi: 10.1002/jms.3743 [28] R. H. Hertwig and W. Koch, Chem. Phys. Lett. 268, 345 (1997). doi: 10.1016/S0009-2614(97)00207-8 [29] S. N.Maximoff and G. E. Scuseria, Chem. Phys. Lett. 390, 408 (2004). doi: 10.1016/j.cplett.2004.04.049 [30] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). doi: 10.1021/j100096a001 [31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, H. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. M. Martain, K. Morokuma, V. G. Zakrzewski, G. A.Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Wallingford, CT: Gaussian, Inc., (2009). [32] J. L.Holmes and F. P. Lossing, Org. Mass Spectrom. 26, 537 (1991). doi: 10.1002/oms.1210260603 [33] M. Meot-Ner, L. W. Sieck, and P. Ausloos, J. Am. Chem. Soc. 103, 5342 (1981). doi: 10.1021/ja00408a011 [34] S. Rang, P. Paldoia, and A. Talvari, Eesti. NSV Tead. Akad. Toim. 354 (1974). [35] K. Watanabe, T. Nakayama, and J. Mottl, J. Quant. Spectry. Radiative Transfer 2, 369 (1962). doi: 10.1016/0022-4073(62)90023-7 [36] S. Han, H. S. Yoo, D. Ahn, Y. S. Choi, and S. K. Kim, Chem. Phys. Lett. 518, 38 (2011). doi: 10.1016/j.cplett.2011.11.005