Tuning Structural, Electronic, and Magnetic Properties of Black-AsP Monolayer by Adatom Adsorptions: A First Principles Study
doi: 10.1063/1674-0068/cjcp1907136
-
摘要: 基于第一性原理,系统研究了11种不同原子吸附在单层AsP上的几何结构、吸附能、磁矩和电子结构性质. 使用的吸附原子包括轻质非金属(C、N、O)原子,第三周期金属原子(Na、Mg、Al)和过渡金属原子(Ti、V、Cr、Mn和Fe). 研究结果表明,吸附原子引起了AsP多样的结构、磁性和电子性质改变. AsP与所研究的吸附原子都能紧密结合,并且所有系统的吸附能都比吸附原子在石墨烯、SiC、BN以及MoS
上的吸附能强得多. AsP的半导体特性受到吸附原子的影响,其可以诱导产生中间能隙态或引起n型掺杂. 此外,表面吸附产生了不同的自旋电子特性,具体而言,吸附N、Ti和Fe的AsP成为双极半导体;Mn修饰的AsP成为双极自旋无间隙半导体.\begin{document}$ _2 $\end{document} -
Key words:
- AsP monolayer /
- Adsorption /
- Magnetism /
- Electronic property /
- Spin polarization
-
Table Ⅰ. Calculated structural and magnetic properties for single atoms adsorbed on (2×3 supercell) AsP at the most favorable adsorption sites:
-
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). doi: 10.1126/science.1102896 [2] Y. Lin and J. W. Connell, Nanoscale 4, 6908 (2012). doi: 10.1039/c2nr32201c [3] R. T. Paine and C. K. Narula, Chem. Rev. 90, 73 (1990). doi: 10.1021/cr00099a004 [4] M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013). doi: 10.1021/cr300263a [5] C. Tan and H. Zhang, Chem. Soc. Rev. 44, 2713 (2015). doi: 10.1039/C4CS00182F [6] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014). doi: 10.1038/nnano.2014.35 [7] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014). doi: 10.1021/nn501226z [8] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Nano Lett. 14, 3347 (2014). doi: 10.1021/nl5008085 [9] W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, and Z. Zhang, Nano Res. 7, 853 (2014). doi: 10.1007/s12274-014-0446-7 [10] Y. Cai, G. Zhang, and Y. W. Zhang, Sci. Rep. 4, 6677 (2014). https://www.nature.com/articles/ismej2011109 [11] J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 4475 (2014). doi: 10.1038/ncomms5475 [12] J. Xiao, M. Long, X. Zhang, J. Ouyang, H. Xu, and Y. Gao, Sci. Rep. 5, 9961 (2015). doi: 10.1038/srep09961 [13] R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo, and L. Yang, Nano Lett. 14, 6393 (2014). doi: 10.1021/nl502865s [14] Z. Y. Ong, Y. Cai, G. Zhang, and Y. W. Zhang, J. Phys. Chem. C 118, 25272 (2014). doi: 10.1021/jp5079357 [15] Y. Cai, Q. Ke, G. Zhang, Y. P. Feng, V. B. Shenoy, and Y. W. Zhang, Adv. Funct. Mater. 25, 2230 (2015). doi: 10.1002/adfm.201404294 [16] Y. Du, H. Liu, Y. Deng, and P. D. Ye, ACS Nano 8, 10035 (2014). doi: 10.1021/nn502553m [17] J. Na, Y. T. Lee, J. A. Lim, D. K. Hwang, G. T. Kim, W. K. Choi, and Y. W. Song, ACS Nano 8, 11753 (2014). doi: 10.1021/nn5052376 [18] A. Avsar, I. J. Vera-Marun, J. Y. Tan, K. Watanabe, T. Taniguchi, A. H. Castro Neto, and B. Özyilmaz, ACS Nano 9, 4138 (2015). doi: 10.1021/acsnano.5b00289 [19] W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J. S. Kim, S. Sonde, L. Tao, N. Lu, and D. Akinwande, Nano Lett. 15, 1883 (2015). doi: 10.1021/nl5047329 [20] P. J. Jeon, Y. T. Lee, J. Y. Lim, J. S. Kim, D. K. Hwang, and S. Im, Nano Lett. 16, 1293 (2016). doi: 10.1021/acs.nanolett.5b04664 [21] M. V. Kamalakar, B. Madhushankar, A. Dankert, and S. P. Dash, Small 11, 2209 (2015). doi: 10.1002/smll.201402900 [22] S. Zhao, W. Kang, and J. Xue, J. Mater. Chem. A 2, 19046 (2014). doi: 10.1039/C4TA04368E [23] W. Li, Y. Yang, G. Zhang, and Y. W. Zhang, Nano Lett. 15, 1691 (2015). doi: 10.1021/nl504336h [24] J. Sun, H. W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, and Y. Cui, Nat. Nanotechnol. 10, 980 (2015). doi: 10.1038/nnano.2015.194 [25] R. Babar and M. Kabir, J. Phys. Chem. C 120, 14991 (2016). doi: 10.1021/acs.jpcc.6b05069 [26] L. Zu, X. Gao, H. Lian, C. Li, Q. Liang, Y. Liang, X. Cui, Y. Liu, X. Wang, and X. Cui, J. Alloy. Compd. 770, 26 (2019). doi: 10.1016/j.jallcom.2018.07.265 [27] Y. Cai, Q. Ke, G. Zhang, and Y. W. Zhang, J. Phys. Chem. C 119, 3102 (2015). doi: 10.1021/jp510863p [28] A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, and C. Zhou, ACS Nano 9, 5618 (2015). doi: 10.1021/acsnano.5b01961 [29] S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, Nat. Commun. 6, 8632 (2015). doi: 10.1038/ncomms9632 [30] B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, and F. Pielnhofer, Adv. Mater. 27, 4423 (2015). doi: 10.1002/adma.201501758 [31] Z. Zhu, J. Guan, and D. Tománek, Nano Lett. 15, 6042 (2015). doi: 10.1021/acs.nanolett.5b02227 [32] F. Shojaei and H. S. Kang, J. Phys. Chem. C 119, 20210 (2015). doi: 10.1021/acs.jpcc.5b07323 [33] M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, and H. Zeng, Nano Energy 28, 433 (2016). doi: 10.1016/j.nanoen.2016.08.058 [34] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76 (2008). [35] C. Cao, M. Wu, J. Jiang, and H. P. Cheng, Phys. Rev. B 81, 205424 (2010). doi: 10.1103/PhysRevB.81.205424 [36] M. Wu, C. Cao, and J. Z. Jiang, Nanotechnology 21, 505202 (2010). doi: 10.1088/0957-4484/21/50/505202 [37] X. Lin and J. Ni, Phys. Rev. B 86, 075440 (2012). doi: 10.1103/PhysRevB.86.075440 [38] H. Sahin and F. M. Peeters, Phys. Rev. B 87, 085423 (2013). doi: 10.1103/PhysRevB.87.085423 [39] J. Sivek, H. Sahin, B. Partoens, and F. M. Peeters, Phys. Rev. B 87, 085444 (2013). doi: 10.1103/PhysRevB.87.085444 [40] V. Q. Bui, T. T. Pham, H. V. S. Nguyen, and H. M. Le, J. Phys. Chem. C 117, 23364 (2013). doi: 10.1021/jp407601d [41] T. P. Kaloni, J. Phys. Chem. C 118, 25200 (2014). doi: 10.1021/jp5058644 [42] S. S. Li, C. W. Zhang, W. X. Ji, F. Li, P. J. Wang, S. J. Hu, S. S. Yan, and Y. S. Liu, Phys. Chem. Chem. Phys. 16, 15968 (2014). doi: 10.1039/C4CP01211A [43] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0 [44] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169 [45] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865 [46] P. E. BlÖchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953 [47] S. Grimme, J. Comput. Chem. 27, 1787 (2006). doi: 10.1002/jcc.20495 [48] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Trans. 2832 (2008). https://pubmed.ncbi.nlm.nih.gov/18478144/ [49] B. Gamoke, D. Neff, and J. Simons, J. Phys. Chem. A 113, 5677 (2009). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19378976 [50] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, and Z. Jiao, Chem. Mater. 21, 3136 (2009). doi: 10.1021/cm900395k [51] H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, and G. Cui, J. Mater. Chem. 21, 5430 (2011). doi: 10.1039/c1jm00049g [52] W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai, and G. Shi, Sci. Rep. 3, 2248 (2013). doi: 10.1038/srep02248 [53] E. Durgun, S. Dag, S. Ciraci, and O. Gülseren, J. Phys. Chem. B 108, 575 (2004). doi: 10.1021/jp0358578 [54] Y. Li, Z. Zhou, P. Shen, and Z. Chen, ACS Nano 3, 1952 (2009). doi: 10.1021/nn9003428