Facile Green Synthesis of Magnetic Fe$ _\textbf{3} $C@C Nanocomposite using Natural Magnetite
doi: 10.1063/1674-0068/cjcp1907142
-
摘要: 采用改进的溶胶凝胶法,以天然磁铁矿为铁源,开发出一种制备过程简单且环境友好且低成本的磁性Fe$ _3 $C$ @ $C纳米材料制备策略.其中,柠檬酸作为多元羧酸络合剂,不但可以有效地溶解不同铁源,例如Fe、Fe$ _3 $O$ _4 $或天然磁铁矿,形成柠檬酸铁盐络合物;还可以在热解过程中作为碳源,形成包裹碳层.通过控制高温热解过程可以直接形成特殊的核-壳结构形态. Fe$ _3 $C$ @ $C纳米材料具有超顺磁性特性(38.09 emu/mg).
-
关键词:
- 磁性材料 /
- 天然铁矿石 /
- Fe$ _3 $C$ @ $C /
- 柠檬酸络合
Abstract: One simple and environmental friendly synthesis strategy for preparing low-cost magnetic Fe$ _3 $C@C materials has been facilely developed using a modified sol-gel approach, wherein natural magnetite acted as the iron source. A chelating polycarboxylic acid such as citric acid (CA) was employed as the carbon source, and it dissolved Fe very effectively, Fe$ _3 $O$ _4 $ and natural magnetite to composite an iron-citrate complex with the assistance of ammonium hydroxide. The core-shell structure of the as-prepared nanocomposites was formed directly by high-temperature pyrolysis. The Fe$ _3 $C@C materials exhibited superparamagnetic properties (38.09 emu/mg), suggesting potential applications in biomedicine, environment, absorption, catalysis, etc.-
Key words:
- Magnetic material, Natural magnetite /
- Fe$ _3 $C@C /
- Citric acid complexation /
-
Figure 3. TEM images of the Fe$ _3 $C@C samples obtained at 500 $ ^{\circ} $C from Fe$ _3 $O$ _4 $ A(a) before and A(b) after acid-treatment, at 700 $ ^{\circ} $C from Fe$ _3 $O$ _4 $; B(a) before, B(b) and B(c) after acid washing, at 700 $ ^{\circ} $C with natural magnetite; C(a) before, C(b) and C(c) after acid washing.
Supplementary Table 1. The element composition of the natural magnetite and the as-prepared Fe3C@C sample.
Supplementary Table 2. Textural properties of the samples.
-
[1] M. Munoz, Z. M. de Pedro, J. A. Casas, and J. J. Rodriguez, Appl. Catal. B 176, 249 (2015). [2] Y. Pan, X. W. Du, F. Zhao, and B. Xu, Chem. Soc. Rev. 41, 2912 (2012). doi: 10.1039/c2cs15315g [3] L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, Particuology 30, 1 (2017). doi: 10.1016/j.partic.2016.06.001 [4] J. P. Wang, Y. Z. Chen, S. J. Yuan, G. P. Sheng, and H. Q. Yu, Water Res. 43, 5267 (2009). doi: 10.1016/j.watres.2009.08.040 [5] Y. C. Wu, J. R. Rao, and X. F. Li, Chin. J. Chem. Phys. 31, 576 (2018). [6] B. Tang, G. X. Hu, and M. Xia, Mater. Lett. 68, 104 (2012). doi: 10.1016/j.matlet.2011.10.059 [7] S. Atiq, S. M. Ramay, A. Mahmood, S. Riaz, and S. Naseem, Chin. J. Chem. Phys. 29, 245 (2016). doi: 10.1063/1674-0068/29/cjcp1507158 [8] Z. T. Ye, P. Zhang, X. Lei, X. B. Wang, N. Zhao, and H. Yang, Chem. Eur. J. 24, 8922 (2018). doi: 10.1002/chem.201706028 [9] F. Y. Gong, T. Q. Ye, L.X. Yuan, T. Kan, Y. Torimoto, M. Yamamoto, and Q. X. Li, Green Chem. 11, 2001 (2009). doi: 10.1039/b915830h [10] V. R. Ambikadevi and M. Lalithambika, Appl. Clay Sci. 16, 133 (2000). doi: 10.1016/S0169-1317(99)00038-1 [11] X. B. Wang, P. Zhang, J. J. Gao, X. D. Chen, and H. Yang, Dyes Pigment. 112, 305 (2015). doi: 10.1016/j.dyepig.2014.07.021 [12] P. Gorria, M. Sevilla, J. A. Blanco, and A. B. Fuertes, Carbon 44, 1954 (2006). doi: 10.1016/j.carbon.2006.02.013 [13] J. Bao, J. J. He, Y. Zhang, Y. Yoneyama, and N. Tsubaki, Angew. Chem. Int. Ed. 47, 353 (2008). doi: 10.1002/anie.200703335 [14] A. V. Erokhin, E. S. Lokteva, A. Y. Yermakov, D. W. Boukhvalov, K. I. Maslakov, E. V. Golubina, and M. A. Uimin, Carbon 74, 291 (2014). doi: 10.1016/j.carbon.2014.03.034 [15] Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, and Q. Li, Angew. Chem. Int. Ed. 53, 3675 (2014). doi: 10.1002/anie.201400358