Fabrication of Melamine/Tb\begin{document}$ ^{\textbf{3+}} $\end{document} -Intercalated Polydiacetylene Nanosheets and Their Thermochromic Reversibility Test
doi: 10.1063/1674-0068/cjcp1907143
-
摘要: 聚二炔(PDA)是一类具有层状结构的共轭聚合物.在插层过程中,客体组分可插入PDA的层间,形成插层结构.在这些结构中,一部分插层复合物具有近乎完美的组装结构,并展现出完全可逆的热致变色特性.迄今为止,已报到的具有近乎完美组装结构的PDA复合物中仅成功插入了单个客体组分.本文选择其一侧的羧基可与Tb
离子或三聚氰胺(MAs)作用的10,12-二十五烷二炔酸(PCDA)作为单体.当PCDA,MA和Tb\begin{document}$ ^{3+} $\end{document} 投料摩尔比为3:267:1时,虽然体系中存在大大过量的MA,仅有Tb$ ^{3+} $离子插入了PDA层间,该复合物具有近乎完美插层结构,表现出完全可逆的热致变色特性.当PCDA,MA和Tb$ ^{3+} $投料摩尔比为3:267:0.6时,此时Tb$ ^{3+} $和MAs都插入了PDA的层间,该复合物存在近乎完美的结构区域和一些不完美的缺陷区域(例如:MA插层区域以及区域-区域边界处).因此,其仅表现出部分可逆的热致变色特性.其近乎完美的结构区域中的共轭主链仍能可逆地恢复至其初始构象,而缺陷区域的共轭主链则很难可逆地恢复至其初始构象.\begin{document}$ ^{3+} $\end{document} -
关键词:
- 聚二炔 /
- 插层 /
- 三聚氰胺 /
- Tb$ ^{3+} $离子 /
- 可逆热致变色
Abstract: Polydiacetylene (PDA) is one kind of the conjugated polymer with layered structure, which can serve as a host to accommodate the guest components through intercalation. In these intercalated PDAs, some of them were reported to have a nearly perfect organized structure and perform completely reversible thermochromism. Till now, these reported intercalated PDAs were made by only introducing a single component for intercalation. Here, we chose 10, 12-pentacosadiynoic acid (PCDA) as the monomer, of which the carboxyl-terminal groups can interact with either Tb ions or melamines (MAs). When the feeding molar ratio of PCDA, MA, and Tb\begin{document}$ ^{3+} $\end{document} ion was 3:267:1, only Tb$ ^{3+} $ions were intercalated though excess MAs existed. Such Tb$ ^{3+} $-intercalated poly-PCDA exhibited completely reversible thermochromism, where almost all the carboxyl groups interacted with Tb$ ^{3+} $ions to form the nearly perfect structure. When the feeding molar ratio of PCDA, MA, and Tb$ ^{3+} $ion was 3:267:0.6, both Tb$ ^{3+} $ions and MAs were intercalated. There existed some defects in the imperfect MA-intercalated domains and at the domain boundaries. The MA/Tb$ ^{3+} $-intercalated poly-PCDA exhibits partially reversible thermochromism, where the backbones near the defects are hard to return the initial conformation, while the rest, those at nearly perfect organized domains, are still able to restore the initial conformation.\begin{document}$ ^{3+} $\end{document} -
Key words:
- Polydiacetylene /
- Intercalation /
- Melamine /
- Tb$ ^{3+} $ ion /
- Reversible thermochromism
-
Scheme 1. Illustration of the preparation procedure of Tb$ ^{3+} $-intercalated PCDA and MA/Tb$ ^{3+} $-intercalated PCDA nano- sheet. The PCDA-MA-Tb$ ^{3+} $ coassemblies were firstly prepared. After annealed at 68 $ ^{\circ} $C for 6 h, the coassemblies were re- organized to Tb$ ^{3+} $-intercalated or MA/Tb$ ^{3+} $-intercalated PCDA depending on the amount of PCDA, MA, and Tb$ ^{3+} $ ion added. In the MA/Tb$ ^{3+} $-intercalated PCDA, there existed Tb$ ^{3+} $-intercalated and MA-intercalated domains.
Figure 1. (a) DSC curve of pure PCDA and Tb$ ^{3+} $-intercalated PCDA, (b) TEM image of Tb$ ^{3+} $-intercalated PCDA nanosheets, and (c) distribution of hydrodynamic diameter ($ D_ \rm{h} $) of Tb$ ^{3+} $-intercalated PCDA nanosheets. The feeding molar ratio of PCDA, MA, and Tb$ ^{3+} $ ion is 3:267:1.
Figure 2. (a) XRD patterns of MA-intercalated PCDA, Tb$ ^{3+} $-intercalated PCDA and MA/Tb$ ^{3+} $-intercalated PCDA, (b) TEM image of MA/Tb$ ^{3+} $-intercalated PCDA nanosheets, (c) distribution of hydrodynamic diameter ($ D_ \rm{h} $) of MA/Tb$ ^{3+} $-intercalated PCDA nanosheet, and (d) DSC curve of PCDA, Tb$ ^{3+} $-intercalated PCDA and MA/Tb$ ^{3+} $-intercalated PCDA. The feeding molar ratio of PCDA, MA, and Tb$ ^{3+} $ ion is 3:267:0.6.
Figure 3. (a) UV-Vis spectra of Tb$ ^{3+} $-intercalated poly-PCDA nanosheet suspension at different temperatures. The abrupt shift of $ \lambda_{ \rm{max}} $ to ca. 550 nm occurred at 80 $ ^{\circ} $C. The dashed line represents the spectrum of the suspension after cooling to 25 $ ^{\circ} $C from 90 $ ^{\circ} $C, indicating the complete reversibility of nanosheet suspension. (b) Colorimetric response (CR) of Tb$ ^{3+} $-intercalated poly-PCDA nanosheet suspension demonstrated its completely reversible thermochromism. The red nanosheet suspension at 90 $ ^{\circ} $C could fully return to the initial blue color when it was cooled to 25 $ ^{\circ} $C during the 20th heating-cooling cycles. (c) UV-Vis spectra of MA/Tb$ ^{3+} $-intercalated poly-PCDA nanosheet suspension during the 1st heating-cooling cycle between 25 $ ^{\circ} $C and 90 $ ^{\circ} $C. (d) CR of nanosheet suspension demonstrated its partial thermochromic reversibility. The red nanosheet suspension at 90 $ ^{\circ} $C yielded to purple color when it was cooled to 25 $ ^{\circ} $C at the 1st heating-cooling cycle. During the 2nd$ - $10th heating-cooling cycles, the suspension alternately switched between purple and red color.
S1. Elemental analysis and ICP-AES results of Tb3+-intercalated PCDA and MA/Tb3+-intercalated PCDA nanosheet
-
[1] K. S. Mali, N. Pearce, S. De Feyter, and N. R. Champness, Chem. Soc. Rev. 46 2520 (2017). doi: 10.1039/C7CS00113D [2] J. M. Kim, J. S. Lee, H. Choi, D. Sohn, and D. J. Ahn, Macromolecules 38 9366 (2005). doi: 10.1021/ma051551i [3] U. Jonas, K. Shah, S. Norvez, and D. H. Charych, J. Am. Chem. Soc. 121 4580 (1999). doi: 10.1021/ja984190d [4] Z. Yuan and T. W. Hanks, Polymer 49 5023 (2008). doi: 10.1016/j.polymer.2008.09.008 [5] S. Wu, L. Pan, Y. J. Huang, N. Yang, and Q. J. Zhang, Soft Matter 14 6929 (2018). doi: 10.1039/C8SM01282B [6] C. Khanantonga, N. Charoenthaia, S. Wacharasindhu, M. Sukwattanasinitt, N. Traiphol, and R. Traiphol, J. Ind. Eng. Chem. 58 258 (2018). doi: 10.1016/j.jiec.2017.09.035 [7] Y. Ishijima, H. Imai, and Y. Oaki, Chem. 3 1 (2017). doi: 10.1016/j.chempr.2017.06.021 [8] H. Terada, H. Imai, and Y. Oaki, Adv. Mater. 30 1801121 (2018). doi: 10.1002/adma.201801121 [9] X. Q. Chen, G. D. Zhou, X. J. Peng, and J. Yoon, Chem. Soc. Rev. 41 4610 (2012). doi: 10.1039/c2cs35055f [10] X. M. Sun, T. Chen, S. Q. Huang, L. Li, and H. S. Peng, Chem. Soc. Rev. 39 4244 (2010). doi: 10.1039/c001151g [11] S. Wacharasindhu, S. Montha, J Boonyiseng, A Potisatityuenyong, C. Phollookin, G. Tumcharern, and M. Sukwattanasinitt, Macromolecules 43 716 (2010). doi: 10.1021/ma902282c [12] T. V. Oliveira, N. F. F. Soares, J. S. R. Coimbra, N. J. Andrade, L. G. Moura, E. A. A. Medeiros, and H. S. Medeiros, Sens. Actuators B: Chem. 221 653 (2015). doi: 10.1016/j.snb.2015.06.130 [13] M. Takeuchi, H. Imai, and Y. Oaki, ACS Appl. Mater. Interfaces 9 16457 (2017). [14] M. Takeuchi, H. Imai, and Y. Oaki, J. Mater. Chem. C 5 8250 (2017). doi: 10.1039/C7TC02218B [15] S. Chae, J. P. Lee, and J. M. Kim, Adv. Funct. Mater. 26 1769 (2016). doi: 10.1002/adfm.201504845 [16] M. Okaniwa, Y. Oaki, and H. Imai, Adv. Funct. Mater. 26 3463 (2016). doi: 10.1002/adfm.201600560 [17] Y. S. Yao, K. Y. Fu, X. Y. Huang, and D. Y. Chen, Chin. J. Chem. 35 1678 (2017). doi: 10.1002/cjoc.201700318 [18] K. Y. Fu and D. Y. Chen, Chin. J. Chem. Phys. 27 465 (2014). doi: 10.1063/1674-0068/27/04/465-470 [19] J. Guo, K. Y. Fu, Z. B. Zhang, L. Y. Yang, Y. C. Huang, C. I. Huang, L. Zhu, and D. Y. Chen, Polymer 105 440 (2016). doi: 10.1016/j.polymer.2016.07.035 [20] Y. Gu, W. Q. Cao, L. Zhu, D. Y. Chen, and M. Jiang, Macromolecules 41 2299 (2008). doi: 10.1021/ma800023f [21] J. Guo, L. Zhu, M. Jiang, and D. Y. Chen, Langmuir 27 6651 (2011). doi: 10.1021/la2007233 [22] K. Y. Fu, Master Thesis Shanghai: Fudan University, No.052044007 (2014).