Six-Dimensional $ab$ $ initio$ Potential Energy Surface and Bound States for He-H$ _\textbf{2} $S Complex
doi: 10.1063/1674-0068/cjcp1907145
-
摘要: 采用[CCSD(T)]-F12a/aug-cc-pVTZ方法,同时在基组中引入中心键函数(3s3p2d1f1g)构建了He-H$ _2 $S复合物的高精度六维势能面. 除分子间振动坐标,同时考虑了H$ _2 $S分子内的$ \nu_1 $对称伸缩振动$ Q_1 $正则模、$ \nu_2 $弯曲振动$ Q_2 $正则模和$ \nu_3 $反对称伸缩振动$ Q_3 $正则模三种振动模式. 将计算得到的六维势能面在$ Q_1 $,$ Q_2 $和$ Q_3 $方向上分别做积分得到H$ _2 $S单体分别处于振动基态、$ \nu_2 $和$ \nu_3 $激发态下的He-H$ _2 $S的三个振动平均势能面. 计算结果表明,每个平均势能面都有一个T 形全局极小值、一个平面局部极小值、两个平面内鞍点和一个平面外鞍点. 全局极小值的几何构型位于$ R $ = 3.46 Å,$ \theta $ = 109.9$ ^\circ $和$ \varphi $ = 0.0$ ^\circ $,势阱深度为35.301 cm$ ^{-1} $. 在径向部分采用离散变量表象法和角度部分采用有限基组表象法并结合Lanczos循环算法计算了He-H$ _2 $S的振转能级和束缚态. 计算发现He-($ para $-H$ _2 $S)在H$ _2 $S的$ \nu_2 $和$ \nu_3 $区域的带心位移分别为 0.025 cm$ ^{-1} $ 和0.031 cm$ ^{-1} $,而He-($ ortho $-H$ _2 $S)的带心位移分别为0.041 cm$ ^{-1} $ 和0.060 cm$ ^{-1} $,都表现为蓝移.
-
关键词:
- He-H$ _2 $S /
- 势能面 /
- 束缚态
-
Key words:
- He-H$ _2 $S /
- Potential energy surface /
- Bound state
-
Table Ⅰ. Characteristic points (R in Å, θ and φ in degree) and the well depths (in cm−1) of the He-H2S with H2S at the vibrational ground and excited states.
Table Ⅱ. The calculated energy levels for He-H$ _2 $S with H$ _2 $S at the vibrational ground and excited states (labeled with $ K $($ j_{k_ak_c} $)$ ^{J+P} $). The $ ^* $ means resonance states.
Table Ⅲ. The rovibrational energy comparison for He-H$ _2 $S on the $ \Sigma $(0$ _{00} $)$ ^ \rm{e} $ and $ \Sigma $(1$ _{01} $)$ ^ \rm{e} $ states with H$ _2 $S at the vibrational ground and excited states (in cm$ ^{-1} $).
-
[1] R. Lascola and D. J. Nesbitt, J. Chem. Phys. 95, 7917 (1991). doi: 10.1063/1.461320 [2] S. Hirabayashi and K. M. T. Yamada, Chem. Phys. Lett. 418, 323 (2006). doi: 10.1016/j.cplett.2005.11.011 [3] B. Yang and P. C. Stancil, J. Chem. Phys. 126, 154306 (2007). doi: 10.1063/1.2720390 [4] B. Yang, M. Nagao, W. Satomi, M. Kimura, and P. C. Stancil, Astrophys. J. 765, 77 (2013). doi: 10.1088/0004-637X/765/2/77 [5] J. M. Flaud and C. Camy-Peyr, Can. J. Phys. 61, 1462 (1983). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19378976 [6] R. P. Wayne, Chemistry of Atmospheres, Oxford, UK: Clarendon Press, (1991). [7] R. C. Cohen, K. L. Busarow, K. B. Laughlin, G. A. Blake, M. Havenith, Y. T. Lee, and R. J. Saykally, J. Chem. Phys. 89, 4494 (1988). [8] G. T. Fraser, F. J. Lovas, R. D. Suenram, and K. Matsumura, J. Mol. Spectros. 144, 97 (1990). doi: 10.1016/0022-2852(90)90310-M [9] R. C. Cohen, K. L. Busarow, Y. T. Lee, and R. J. Saykally, J. Chem. Phys. 92, 169 (1990). doi: 10.1063/1.458459 [10] D. J. Nesbitt and R. Lascola, J. Chem. Phys. 97, 8096 (1992). doi: 10.1063/1.463431 [11] R. C. Cohen and R. J. Saykally, J. Chem. Phys. 98, 6007 (1993). doi: 10.1063/1.464841 [12] J. V. Wijngaarden, and W. Jäger, Mol. Phys. 98, 1575 (2000). https://www.researchgate.net/publication/234994869_Microwave_spectra_of_the_Ar-ND3_van_der_Waals_complex_and_its_partially_protonated_isotopomers [13] Q. Wen and W. Jäger, J. Phys. Chem. A 110, 7560 (2006). doi: 10.1021/jp0619890 [14] S. Li, R. Zheng, Y. Zhu, and C. X. Duan, J. Chem. Phys. 135, 134304 (2011). doi: 10.1063/1.3644776 [15] R. Viswanathan and T. R. Dyke, J. Chem. Phys. 82, 1674 (1985). doi: 10.1063/1.448399 [16] H. S. Gutowsky, T. Emilsson, and E. Arunan, J. Chem. Phys. 106, 5309 (1997). doi: 10.1063/1.473066 [17] Y. Liu and W. Jäger, Mol. Phys. 100, 611 (2002). doi: 10.1080/00268970110099576 [18] G. Chal/asiński, M. M. Szczcȩśniak, and S. Scheiner, J. Chem. Phys. 94, 2807 (1991). doi: 10.1063/1.459857 [19] M. Bulski, P. E. S. Wormer, and A. van der Avoird, J. Chem. Phys. 94, 8096 (1991). doi: 10.1063/1.460092 [20] K. Patkowski, T. Korona, R. Moszynski, B. Jeziorski, and K. Szalewicz, J. Mol. Struct. 591, 231 (2002). doi: 10.1016/S0166-1280(02)00244-0 [21] X. L. Sun, Y. Hu, and H. Zhu, J. Chem. Phys. 138, 204312 (2013). doi: 10.1063/1.4807497 [22] J. Makarewicz, J. Chem. Phys. 129, 184310 (2008). doi: 10.1063/1.3009270 [23] L. Wang and M. H. Yang, J. Chem. Phys. 129, 174305 (2008). doi: 10.1063/1.3005645 [24] G. de Oliveira and C. E. Dykstra, J. Chem. Phys. 106, 5316 (1997). doi: 10.1063/1.473562 [25] D. Cappelletti, A. F. Vilela, P. R. Barreto, R. Gargano, F. Pirani, and V. Aquilanti, J. Chem. Phys. 125, 133111 (2006). doi: 10.1063/1.2218513 [26] J. P. Lei, M. Y. Xiao, Y. Z. Zhou, and D. Q. Xie, J. Chem. Phys. 136, 214307 (2012). doi: 10.1063/1.4725715 [27] J. P. Lei, Y. Z. Zhou, and D. Q. Xie, J. Chem. Phys. 136, 084310 (2012). doi: 10.1063/1.3689443 [28] D. Hou, Y. T. Ma, X. L. Zhang, and H. Li, J. Chem. Phys. 144, 014301 (2016). doi: 10.1063/1.4939089 [29] D. Hou, Y. T. Ma, X. L. Zhang, and H. Li, J. Mol. Spectrosc. 330, 217 (2016). doi: 10.1016/j.jms.2016.07.009 [30] X. Liu, D. Hou, J. Thomas, H. Li, and Y. Xu, J. Mol. Spectrosc. 330, 236 (2016). doi: 10.1016/j.jms.2016.08.011 [31] H. Guo, R. Q. Chen, and D. Q. X, J. Theo. Comput. Chem. 1, 173 (2002). doi: 10.1142/S0219633602000129 [32] T. Jiang, C. Y. Han, and H. Zhu, Mol. Phys. 118, e1612958 (2020). doi: 10.1080/00268976.2019.1612958 [33] H. Wei and T. Carrington, J. Chem. Phys. 97, 3029 (1992). doi: 10.1063/1.463044 [34] D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993). doi: 10.1063/1.464303 [35] T. B. Pedersen and B. Fernández, J. Chem. Phys. 115, 8431 (2001). doi: 10.1063/1.1398102 [36] T. Yuan and H. Zhu, Theor. Chem. Acc. 133, 1 (2014). [37] J. M. Liu, Y. Zhai, and H. Li, J. Chem. Phys. 147, 044313 (2017). doi: 10.1063/1.4996086 [38] S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). doi: 10.1080/00268977000101561 [39] H. J. Werner, P. J. Knowles, R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh, A. W. Lloyd, W. Meyer, A. Nicklass, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Pulay, M. Schutz, H. Stoll, and T. Thoorstcinsso, MOLPRO, version 2000.1, a Package of ab initio Programs 2000. http://www.molpro.net. [40] I. N. Kozin and P. Jensen, J. Mol. Spectrosc. 163, 483 (1994). doi: 10.1006/jmsp.1994.1041 [41] Ala'a A. A. Azzam, S. N. Yurchenko, J. Tennyson, M. Aline, M. Drumel, and O. Pirali, J. Quant. Spectrosc. Radiat. Transfer. 130, 341 (2013). doi: 10.1016/j.jqsrt.2013.05.035 [42] S. Y. Lin and H. Guo, J. Chem. Phys. 117, 5183 (2002). doi: 10.1063/1.1500731 [43] C. Leforestier, J. Chem. Phys. 101, 7357 (1994). doi: 10.1063/1.468455 [44] D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992). doi: 10.1063/1.462100 [45] C. J. Lanczos, Res. Natl. Bur. Stand. 45, 255 (1950). doi: 10.6028/jres.045.026 [46] G. Cazzoli and C. Puzzarini, J. Mol. Spectros. 298, 31 (2014). doi: 10.1016/j.jms.2014.02.002