Highly Sensitive Flexible Pressure Sensors based on Graphene/Graphene Scrolls Multilayer Hybrid Films
doi: 10.1063/1674-0068/cjcp1907146
-
摘要: 一维导电材料例如纳米线,大量应用于柔性压力传感器中.但是一维材料和基底之间接触时相互作用力较弱,使得传感器灵敏度、响应时间、和循环寿命等性能指标有待进一步提高.针对这些问题,设计了石墨烯/石墨烯卷轴多分子层复合薄膜作为传感器导电层.石墨烯卷轴具有一维结构,而石墨烯的二维结构可以牢固地固定卷轴,以确保高导电性复合薄膜与基底之间的粘附性,同时整体结构的导电通道得到了增加.由于一维和二维结构的协同效应,实现了应变灵敏度系数3.5 kPa$ ^{-1} $、响应时间小于50 ms、能够稳定工作1000次以上的压阻传感器.Abstract: In recent years, flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics. As a result, important innovations have been reported in both conductive materials and the underlying substrates, which are the two crucial components of a pressure sensor. 1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors, but such sensors usually exhibit low performances mainly due to the lack of strong interfacial interactions between the substrates and 1D materials. In this paper, we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a micro-structured polydimethylsiloxane substrate using Epipremnum aureum leaf as the template to fabricate highly sensitive pressure sensors. The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate. We attribute the increased sensitivity (3.5 kPa$ ^{-1} $), fast response time ($ < $50 ms), and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films. Test results demonstrate that these sensors are promising for electronic skins and motion detection applications.
-
Key words:
- Pressure sensor /
- Graphene scrolls /
- Hybrid films /
- Electronic skins
-
Figure 1. Fabrication of G/GS pressure sensor. (a$ - $c) Fabrication of G/GS films of different layers. (d) PDMS substrate with microstructures on surface that replicates the surface structure of Epipremnum aureum leaf coated with G/GS films. (e) Photograph of a G/GS pressure sensor assembled using m-PDMS and G/GS films. (f) Schematic of the structure deformation when pressure is loading/unloading.
Figure 3. Electromechanical properties of the G/GS pressure sensor. (a) Sensitivity of G/GS pressure sensors with different numbers of stacked G/GS layers. (b) Sensitivity of the pressure sensor in the presence of graphene scrolls compared to that of pure graphene film. (c) Response of the pressure sensor under different stress conditions. (d) Linear relationship between $ \Delta R/R_0 $ and stress. (e) Performance of the pressure sensor during 1000 cycles under 459.1 Pa pressure. (f) Magnified image of (e). Response time of (g) 50 ms and (h) 30 ms for the 4-layer G/GS pressure sensor.
S1. Summary of recently reported piezoresistive sensors from previous work.
-
[1] J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, and H. Ko, ACS Nano 8, 4689 (2014). doi: 10.1021/nn500441k [2] S. H. Shin, S. Ji, S. Choi, K. H. Pyo, B. Wan An, J. Park, J. Kim, J. Y. Kim, and J. U. Park, Nat. Commun. 8, 14950 (2017). doi: 10.1038/ncomms14950 [3] K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, Nat. Mater. 9, 821 (2010). doi: 10.1038/nmat2835 [4] Y. Zhu, J. Li, H. Cai, Y. Wu, H. Ding, N. Pan, and X. Wang, Sensor. Actuat. B 255, 1262 (2018). doi: 10.1016/j.snb.2017.08.116 [5] C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, and Y. Zhang, Adv. Mater. 28, 6640 (2016). doi: 10.1002/adma.201601572 [6] Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, ACS Nano 12, 2346 (2018). doi: 10.1021/acsnano.7b07613 [7] H. Chen, Z. Su, Y. Song, X. Cheng, X. Chen, B. Meng, Z. Song, D. Chen, and H. Zhang, Adv. Funct. Mater. 27, (2017). [8] L. Q. Tao, K. N. Zhang, H. Tian, Y. Liu, D. Y. Wang, Y. Q. Chen, Y. Yang, and T. L. Ren, ACS Nano 11, 8790 (2017). doi: 10.1021/acsnano.7b02826 [9] K. Xia, C. Wang, M. Jian, Q. Wang, and Y. Zhang, Nano Res. 11, 1124 (2017). [10] B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, and X. Chen, Small 10, 3625 (2014). doi: 10.1002/smll.201401207 [11] L. Zhang, G. Hou, Z. Wu, and V. Shanov, Nano LIFE 6, 1642005 (2016). doi: 10.1142/S1793984416420058 [12] Y. Hou, D. Wang, X. M. Zhang, H. Zhao, J. W. Zha, and Z. M. Dang, J. Mater. Chem. C 1, 515 (2013). [13] A. Rinaldi, A. Tamburrano, M. Fortunato, and M. S. Sarto, Sensors 16, (2016). [14] T. Q. Trung, S. Ramasundaram, B. U. H Wang, and N. E. Lee, Adv. Mater. 28, 502 (2016). doi: 10.1002/adma.201504441 [15] A. S. Shaplov, D. O. Ponkratov, P. H. Aubert, E. I. Lozinskaya, C. Plesse, F. Vidal, and Y. S. Vygodskii, Chem. Commun. 50, 3191 (2014). doi: 10.1039/C3CC49876J [16] J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T. S. Kim, D. Lee, and S. H. Ko, Adv. Funct. Mater. 23, 4171 (2013). doi: 10.1002/adfm.201203802 [17] A. V. Shirinov and W. K. Schomburg, Sensor. Actuat. A 142, 48 (2008). doi: 10.1016/j.sna.2007.04.002 [18] C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. S. Kim, Y. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. Huang, and J. A. Rogers, Nat. Commun. 5, 4496 (2014). doi: 10.1038/ncomms5496 [19] D. Mandal, S. Yoon, and K. J. Kim, Macromol. Rapid. Commun. 32, 831 (2011). doi: 10.1002/marc.201100040 [20] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao, Nat. Commun. 5, 3002 (2014). doi: 10.1038/ncomms4002 [21] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, Nat. Commun. 5, 3132 (2014). doi: 10.1038/ncomms4132 [22] C. Pang, G. Y. Lee, T. i. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, and K. Y. Suh, Nat. Mater. 11, 795 (2012). doi: 10.1038/nmat3380 [23] C. H. Mastrangelo, Z. Xia, and W. C. Tang, J. Microelectromech. S 5, 98 (1996). doi: 10.1109/84.506197 [24] S. Jung, J. Lee, T. Hyeon, M. Lee, and D. H. Kim, Adv. Mater. 26, 6329 (2014). doi: 10.1002/adma.201402439 [25] D. J. Cohen, D. Mitra, K. Peterson, and M. M. Maharbiz, Nano Lett. 12, 1821 (2012). doi: 10.1021/nl204052z [26] H. B. Yao, J. Ge, C. F. Wang, X. Wang, W. Hu, Z. J. Zheng, Y. Ni, and S. H. Yu, Adv. Mater. 25, 6692 (2013). doi: 10.1002/adma.201303041 [27] M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, Adv. Mater. 22, 2663 (2010). doi: 10.1002/adma.200904270 [28] J. Kuang, Z. Dai, L. Liu, Z. Yang, M. Jin, and Z. Zhang, Nanoscale 7, 9252 (2015). doi: 10.1039/C5NR00841G [29] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, Sci. Adv. 1, e1500661 (2015). doi: 10.1126/sciadv.1500661 [30] K. Y. Lee, H. J. Yoon, T. Jiang, X. Wen, W. Seung, S. W. Kim, and Z. L. Wang, Adv. Energy Mater. 6, 1502566 (2016). doi: 10.1002/aenm.201502566 [31] X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, Adv. Mater. 26, 1336 (2014). doi: 10.1002/adma.201304248 [32] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nat. Mater. 9, 859 (2010). doi: 10.1038/nmat2834 [33] C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. Tok, and Z. Bao, Adv. Mater. 27, 634 (2015). doi: 10.1002/adma.201403807 [34] B. Su, S. Gong, Z. Ma, L. W. Yap, and W. Cheng, Small 11, 1886 (2015). doi: 10.1002/smll.201403036 [35] Y. Lin, X. Dong, S. Liu, S. Chen, Y. Wei, and L. Liu, ACS Appl. Mater. Inter. 8, 24143 (2016). doi: 10.1021/acsami.6b08587 [36] Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He, and Y. Li, ACS Nano 9, 8933 (2015). doi: 10.1021/acsnano.5b02781 [37] Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, and B. Ding, Adv. Mater. 28, 9512 (2016). doi: 10.1002/adma.201603143 [38] S. Chun, H. Jung, Y. Choi, G. Bae, J. P. Kil, and W. Park, Carbon 94, 982 (2015). doi: 10.1016/j.carbon.2015.07.088 [39] G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, and K. Cho, Adv. Mater. 28, 5300 (2016). doi: 10.1002/adma.201600408 [40] L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, and Z. L. Wang, ACS Nano 7, 8266 (2013). doi: 10.1021/nn4037514 [41] L. Z. Sheng, Y. Liang, L. L. Jiang, Q. Wang, T. Wei, L. T. Qu, and Z. J. Fan, Adv. Funct. Mater. 25, 6545 (2015). doi: 10.1002/adfm.201502960 [42] M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, Adv. Funct. Mater. 27, 1606066 (2017). doi: 10.1002/adfm.201606066 [43] W. He, G. Li, and S. Zhang, ACS Nano 9, 4244 (2015). doi: 10.1021/acsnano.5b00626 [44] S. Chun, Y. Kim, H. S. Oh, G. Bae, and W. Park, Nanoscale 7, 11652 (2015). doi: 10.1039/C5NR00076A [45] N. Liu, A. Chortos, T. Lei, L. Jin, T. R. Kim, W. G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair, and Z. Bao, Sci. Adv. 3, (2017). [46] N. Lu, C. Lu, S. Yang, and J. Rogers, Adv. Funct. Mater. 22, 4044 (2012). doi: 10.1002/adfm.201200498 [47] Y. Wei, S. Chen, X. Yuan, P. Wang, and L. Liu, Adv. Funct. Mater. 26, 5078 (2016). doi: 10.1002/adfm.201600580 [48] Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, ACS Nano 5, 3645 (2011). doi: 10.1021/nn103523t -